Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. E. Koliatsos is active.

Publication


Featured researches published by V. E. Koliatsos.


Physics in Medicine and Biology | 2015

Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging

Hao Dang; J. W. Stayman; A. Sisniega; Jingyan Xu; Wojciech Zbijewski; Xinhui Wang; David H. Foos; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ~40-80 HU, size  >  1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of intracranial hemorrhage.


Physics in Medicine and Biology | 2015

High-fidelity artifact correction for cone-beam CT imaging of the brain.

A. Sisniega; Wojciech Zbijewski; Jingyan Xu; Hao Dang; J. W. Stayman; John Yorkston; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening.The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT.Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement with the nominal blood contrast of 50 HU. Although noise was amplified by the corrections, the contrast-to-noise ratio (CNR) of simulated bleeds was improved by nearly a factor of 3.5 (CNR = 0.54 without corrections and 1.91 after correction). The resulting image quality motivates further development and translation of the FPD-CBCT system for imaging of acute TBI.


Physics in Medicine and Biology | 2016

Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization

Jingyan Xu; A. Sisniega; Wojciech Zbijewski; Hao Dang; J. W. Stayman; Xinhui Wang; David H. Foos; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD = 750 mm, SDD  = 1100 mm) was found to be advantageous in terms of patient dose (20 mGy) and scatter reduction, while a more isocentric configuration (SAD = 550 mm, SDD  = 1000 mm) was found to give a more compact and mechanically favorable configuration with minor tradeoff in detectability. An x-ray source with a 0.6 mm focal spot size provided the best compromise between spatial resolution requirements and x-ray tube power. Use of a modest anti-scatter grid (8:1 GR) at a 20 mGy dose provided slight improvement (~5-10%) in the detectability index, but the benefit was lost at reduced dose. The potential advantages of CMOS detectors over FPDs were quantified, showing that both detectors provided sufficient spatial resolution for ICH detection, while the former provided a potentially superior low-dose performance, and the latter provided the requisite FOV for volumetric imaging in a centered-detector geometry. Task-based imaging performance modeling provides an important starting point for CBCT system design, especially for the challenging task of ICH detection, which is somewhat beyond the capabilities of existing CBCT platforms. The model identifies important tradeoffs in system geometry and hardware configuration, and it supports the development of a dedicated CBCT system for point-of-care application. A prototype suitable for clinical studies is in development based on this analysis.


Medical Physics | 2016

Technical assessment of a prototype cone-beam CT system for imaging of acute intracranial hemorrhage

Jennifer Xu; A. Sisniega; Wojciech Zbijewski; Hao Dang; J. Webster Stayman; Michael Mow; Xiaohui Wang; David H. Foos; V. E. Koliatsos; Nafi Aygun; Jeffrey H. Siewerdsen

PURPOSE A cone-beam CT scanner has been developed for detection and monitoring of traumatic brain injury and acute intracranial hemorrhage (ICH) at the point of care. This work presents a technical assessment of imaging performance and dose for the scanner in phantom and cadaver studies as a prerequisite to clinical translation. METHODS The scanner incorporates a compact, rotating-anode x-ray source and a flat-panel detector (43 × 43 cm2) on a mobile U-arm gantry with source-axis distance = 550 mm and source-detector distance = 1000 mm. Central and peripheral doses were measured in 16 cm diameter CTDI phantoms using a 0.6 cm3 Farmer ionization chamber for various scan techniques and as a function of longitudinal position, including out of field. Spatial resolution, contrast, noise, and image uniformity were assessed in quantitative and anthropomorphic head phantoms. Two reconstruction protocols were evaluated, including filtered backprojection (FBP) for high-resolution bone imaging and penalized weighted least squares (PWLS) reconstruction for low-contrast soft tissue (ICH) visualization. A fresh cadaver was imaged with and without simulated ICH using the scanner as well as a diagnostic multidetector CT (MDCT) scanner using a standard head protocol. Images were interpreted by a fellowship-trained neuroradiologist for imaging tasks of ICH detection, gray-white-CSF differentiation, detection of midline shift, and fracture detection. RESULTS The nominal scan protocol involved 720 projections acquired over a 360° orbit at 100 kV and 216 mAs, giving a dose (weighted CTDI) of 22.8 mGy (∼1.2 mSv effective dose). Out-of-field dose decreased to <10% within 6 cm of the field edge (approximate to the thyroid position). Image uniformity demonstrated <1% variation between the edge of the field (near the cranium) and center of the image. The high-resolution FBP reconstruction protocol showed ∼0.9 mm point spread function (PSF) full-width at half-maximum (FWHM). The smooth PWLS reconstruction protocol yielded ∼1.2 mm PSF FWHM and contrast-to-noise ratio exceeding 5.7 in ∼50 HU spherical ICH, resulting in conspicuous depiction of ICH down to ∼2 mm (the smallest diameter investigated). Cadaver images demonstrated good differentiation of brain and CSF (sufficient, but inferior to MDCT, recognizing that the CBCT dose was one-third that of MDCT), excellent visualization of cranial sutures and fracture (potentially superior to MDCT), clear detection of midline shift, and conspicuous detection of ICH. CONCLUSIONS Technical assessment of the prototype demonstrates dose characteristics and imaging performance consistent with point-of-care detection and monitoring of head injury-most notably, conspicuous detection of ICH-and supports translation of the system to clinical studies.


Physics in Medicine and Biology | 2016

Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.

Jennifer Xu; A. Sisniega; Wojciech Zbijewski; Hao Dang; J. Webster Stayman; Xiaohui Wang; David H. Foos; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered on the posterior of the head reduced dose to the eye lens by up to 90%. Acquisition in DG mode (without a bowtie filter) was beneficial to the detection of small, low contrast lesions (e.g. subtle ICH) in CBCT. While bowtie filters were found to reduce dose, mitigate sensor saturation at the periphery in HG mode, and improve CNR at the center of the image, the image quality at the periphery was slightly reduced compared to DG mode, and the use of a bowtie required careful implementation of the polyenergetic flood-field correction to avoid artifacts.


Proceedings of SPIE | 2015

Cone-beam CT of traumatic brain injury using statistical reconstruction with a post-artifact-correction noise model

Hao Dang; J. W. Stayman; A. Sisniega; Jingyan Xu; Wojciech Zbijewski; John Yorkston; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Image quality, scatter, and dose in compact CBCT systems with flat and curved detectors

A. Sisniega; Wojciech Zbijewski; P. Wu; J. W. Stayman; V. E. Koliatsos; Nafi Aygun; R. Stevens; Xiaohui Wang; David H. Foos; Jeffrey H. Siewerdsen

Purpose: A number of cone-beam CT (CBCT) applications demand increasingly compact system designs for smaller footprint and improved portability. Such compact geometries can be achieved via reduction of air gap and integration of novel, curved detectors; however, the increased x-ray scatter in presents a major challenge to soft-tissue image quality in such compact arrangements. This work investigates pre-patient modulation (bowtie filters) and antiscatter grids to mitigate such effects for compact geometries with curved detectors. Methods: The effects of bowtie filters on dose and x-ray scatter were investigated in a compact geometry (180 mm air gap), for three detector curvatures: Flat, Focused at source, and Compact focused at isocenter. Experiments used bowtie filters of varying curvature combined with antiscatter grids (GR: 8:1, 80 lpmm). Scatter was estimated via GPU-accelerated Monte Carlo simulation in an anthropomorphic head phantom. Primary fluence was estimated with a polychromatic Siddon projector. Realistic Poisson noise (total dose: 20 mGy) was added to the total signal. Scatter magnitude and distribution were evaluated in projection data, and CT image quality was assessed in PWLS reconstructions. Results were validated in physical experiments on an x-ray test-bench for CBCT. Results: Moderate bowties combined with grids reduced average scatter magnitude and SPR, reduced cupping from 90 to 5 HU, and yielded net benefit to CNR despite attenuation of primary fluence. Dose to sensitive organs (eye lens) was reduced by 27%. More aggressive bowties showed further potential for dose reduction (35%) but increased peripheral SPR and increased non-uniformity and artifacts at the periphery of the image. Curved detector geometry exhibited slightly improved uniformity but a slight reduction in CNR compared to conventional flat detector geometry. Conclusion: Highly portable, soft-tissue imaging, CBCT systems with very compact geometry and curved detectors appear feasible, despite elevated x-ray scatter, through combination of moderate pre-patient collimation and antiscatter grids.


Proceedings of SPIE | 2017

Brain perfusion imaging using a Reconstruction-of-Difference (RoD) approach for cone-beam computed tomography

Michael Mow; Wojciech Zbijewski; A. Sisniega; Jingyan Xu; Hao Dang; J. W. Stayman; Xiaohui Wang; David H. Foos; V. E. Koliatsos; Nafi Aygun; Jeffrey H. Siewerdsen

Purpose: To improve the timely detection and treatment of intracranial hemorrhage or ischemic stroke, recent efforts include the development of cone-beam CT (CBCT) systems for perfusion imaging and new approaches to estimate perfusion parameters despite slow rotation speeds compared to multi-detector CT (MDCT) systems. This work describes development of a brain perfusion CBCT method using a reconstruction of difference (RoD) approach to enable perfusion imaging on a newly developed CBCT head scanner prototype. Methods: A new reconstruction approach using RoD with a penalized-likelihood framework was developed to image the temporal dynamics of vascular enhancement. A digital perfusion simulation was developed to give a realistic representation of brain anatomy, artifacts, noise, scanner characteristics, and hemo-dynamic properties. This simulation includes a digital brain phantom, time-attenuation curves and noise parameters, a novel forward projection method for improved computational efficiency, and perfusion parameter calculation. Results: Our results show the feasibility of estimating perfusion parameters from a set of images reconstructed from slow scans, sparse data sets, and arc length scans as short as 60 degrees. The RoD framework significantly reduces noise and time-varying artifacts from inconsistent projections. Proper regularization and the use of overlapping reconstructed arcs can potentially further decrease bias and increase temporal resolution, respectively. Conclusions: A digital brain perfusion simulation with RoD imaging approach has been developed and supports the feasibility of using a CBCT head scanner for perfusion imaging. Future work will include testing with data acquired using a 3D-printed perfusion phantom currently and translation to preclinical and clinical studies.


Proceedings of SPIE | 2017

Development and clinical translation of a cone-beam CT scanner for high-quality imaging of intracranial hemorrhage

A. Sisniega; Jingyan Xu; Hao Dang; Wojciech Zbijewski; J. W. Stayman; Michael Mow; V. E. Koliatsos; Nafi Aygun; Xiaohui Wang; David H. Foos; Jeffrey H. Siewerdsen

Purpose: Prompt, reliable detection of intracranial hemorrhage (ICH) is essential for treatment of stroke and traumatic brain injury, and would benefit from availability of imaging directly at the point-of-care. This work reports the performance evaluation of a clinical prototype of a cone-beam CT (CBCT) system for ICH imaging and introduces novel algorithms for model-based reconstruction with compensation for data truncation and patient motion. Methods: The tradeoffs in dose and image quality were investigated as a function of analytical (FBP) and model-based iterative reconstruction (PWLS) algorithm parameters using phantoms with ICH-mimicking inserts. Image quality in clinical applications was evaluated in a human cadaver imaged with simulated ICH. Objects outside of the field of view (FOV), such as the head-holder, were found to introduce challenging truncation artifacts in PWLS that were mitigated with a novel multi-resolution reconstruction strategy. Following phantom and cadaver studies, the scanner was translated to a clinical pilot study. Initial clinical experience indicates the presence of motion in some patient scans, and an image-based motion estimation method that does not require fiducial tracking or prior patient information was implemented and evaluated. Results: The weighted CTDI for a nominal scan technique was 22.8 mGy. The high-resolution FBP reconstruction protocol achieved < 0.9 mm full width at half maximum (FWHM) of the point spread function (PSF). The PWLS soft-tissue reconstruction showed <1.2 mm PSF FWHM and lower noise than FBP at the same resolution. Effects of truncation in PWLS were mitigated with the multi-resolution approach, resulting in 60% reduction in root mean squared error compared to conventional PWLS. Cadaver images showed clear visualization of anatomical landmarks (ventricles and sulci), and ICH was conspicuous. The motion compensation method was shown in clinical studies to restore visibility of fine bone structures, such as the subtle fracture, cranial sutures, and the cochlea as well as subtle low-contrast structures in the brain parenchyma. Conclusion: The imaging performance of the prototype suggests sufficient quality for ICH imaging and motivates continued clinical studies to assess the diagnosis utility of the CBCT system in realistic clinical scenarios at the point of care.


Proceedings of SPIE | 2016

Design and characterization of a dedicated cone-beam CT scanner for detection of acute intracranial hemorrhage

Jingyan Xu; A. Sisniega; Wojciech Zbijewski; Hao Dang; J. W. Stayman; Xiaohui Wang; David H. Foos; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

Purpose: Prompt and reliable detection of intracranial hemorrhage (ICH) has substantial clinical impact in diagnosis and treatment of stroke and traumatic brain injury. This paper describes the design, development, and preliminary performance characterization of a dedicated cone-beam CT (CBCT) head scanner prototype for imaging of acute ICH. Methods: A task-based image quality model was used to analyze the detectability index as a function of system configuration, and hardware design was guided by the results of this model-based optimization. A robust artifact correction pipeline was developed using GPU-accelerated Monte Carlo (MC) scatter simulation, beam hardening corrections, detector veiling glare, and lag deconvolution. An iterative penalized weighted least-squares (PWLS) reconstruction framework with weights adjusted for artifact-corrected projections was developed. Various bowtie filters were investigated for potential dose and image quality benefits, with a MC-based tool providing estimates of spatial dose distribution. Results: The initial prototype will feature a source-detector distance of 1000 mm and source-axis distance of 550 mm, a 43x43 cm2 flat panel detector, and a 15° rotating anode x-ray source with 15 kW power and 0.6 focal spot size. Artifact correction reduced image nonuniformity by ~250 HU, and PWLS reconstruction with modified weights improved the contrast to noise ratio by 20%. Inclusion of a bowtie filter can potentially reduce dose by 50% and improve CNR by 25%. Conclusions: A dedicated CBCT system capable of imaging millimeter-scale acute ICH was designed. Preliminary findings support feasibility of point-of-care applications in TBI and stroke imaging, with clinical studies beginning on a prototype.

Collaboration


Dive into the V. E. Koliatsos's collaboration.

Top Co-Authors

Avatar

A. Sisniega

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nafi Aygun

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Dang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

J. W. Stayman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jingyan Xu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Mow

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge