V. G. Eselevich
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. G. Eselevich.
Cosmic Research | 2009
V. G. Eselevich; V. G. Fainshtein; G. V. Rudenko; M. V. Eselevich; L. K. Kashapova
A brief review is given of contemporary approaches to solving the problem of medium-term forecast of the velocity of quasi-stationary solar wind (SW) and of the intensity of geomagnetic disturbances caused by it. At the present time, two promising models of calculating the velocity of quasi-stationary SW at the Earth’s orbit are realized. One model is the semi-empirical model of Wang-Sheeley-Arge (WSA) which allows one to calculate the dependence V(t) of SW velocity at the Earth’s orbit using measured values of the photospheric magnetic field. This model is based on calculation of the local divergence fS of magnetic field lines. The second model is semi-empirical model by Eselevich-Fainshtein-Rudenko (EFR). It is based on calculation in a potential approximation of the area of foot points on the solar surface of open magnetic tubes (sources of fast quasistationary SW). The new Bd-technology is used in these calculations, allowing one to calculate instantaneous distributions of the magnetic field above the entire visible surface of the Sun. Using predicted V(t) profiles, one can in EFR model calculate also the intensity of geomagnetic disturbances caused by quasi-stationary SW. This intensity is expressed through the Kp index. In this paper the EFR model is discussed in detail. Some examples of epignosis and real forecast of V(t) and Kp(t) are discussed. A comparison of the results of applying these two models for the SW velocity forecasting is presented.
Geomagnetism and Aeronomy | 2011
V. G. Eselevich; M. V. Eselevich
In this paper, we examine the nature of the main source of the sporadic solar wind on the Sun: coronal mass ejections (CMEs). Analysis of data from Mark 3 and Mark 4, the Digital Prominence Monitor (MLSO), and STEREO (EUVI) spacecraft has revealed the existence of two types of CMEs: gradual and impulse. They differ in the place, velocity, and angular size at the instant of their emergence. The source of gradual CMEs is located in the corona, at a distance of 1.1 R0 < R ≤ 1.7 R0 from the center of the Sun. They start moving from a state of rest, having an angular size ≈15–65° (in the heliographic coordinate system). Impulse CMEs are probably formed under the Sun’s photosphere. This may be due to the supersonic emergence of magnetic tubes (ropes) from the convective zone. The possibility of this phenomenon has been demonstrated earlier in theory. The radial velocity of such tubes at the photospheric level may be 100 km/s or higher; the minimum angular size is ∼1°.
Geomagnetism and Aeronomy | 2006
M. V. Eselevich; V. G. Eselevich
White corona images are analyzed based on the calibrated data of the LASCO-C2/SOHO instrument (processing level 1) and the solar wind (SW) parameters with hourly and minute resolutions on the Wind spacecraft. The quasistationary events, excluding coronal mass ejections and their manifestations in SW are studied. It has been indicated that the angular dimensions and relative variations in the density of the streamer belt segments remain almost unchanged over the entire distance from the Sun to the Earth’s orbit. In the Earth’s orbit, the ray structure of the belt streamer manifests itself as sharp (with steep fronts lasting several minutes and less) peaks (of several hours in duration) of the solar wind plasma density with maximal values Nmax > 10 cm−3.
Cosmic Research | 2017
V. G. Eselevich; N. L. Borodkova; M. V. Eselevich; G. N. Zastenker; Y. Šafránkova; Z. Němeček; L. Přech
According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (МА < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.
Geomagnetism and Aeronomy | 2009
V. G. Eselevich; V.M. Bogod; I. V. Chashey; M. V. Eselevich; Yu. I. Yermolaev
The solar sources of the magnetic storms of November 8 and 10, 2004, are analyzed. The preliminary results of such an analysis [Yermolaev et al., 2005] are critically compared with the results of the paper [Tsurutani et al., 2008], where solar flares were put in correspondence with these magnetic storms. The method for determining solar sources that cause powerful magnetospheric storms is analyzed. It has been indicated that an optimal approach consists in considering coronal mass ejections (CMEs) as storm sources and accompanying flares as additional information about the location of CME origination.
Astronomy Reports | 2017
V. G. Eselevich; M. V. Eselevich; I. V. Zimovets; I. N. Sharykin
The solar event SOL2012–10–23T03:13, which was associated with a X1.8 flare without an accompanying coronal mass ejection (CME) and with a Type II radio burst, is analyzed. A method for constructing the spatial and temporal profiles of the difference brightness detected in the AIA/SDOUVand EUV channels is used together with the analysis of the Type II radio burst. The formation and propagation of a region of compression preceded by a collisional shock detected at distances R < 1.3R⊙ from the center of the Sun is observed in this event (R⊙ is the solar radius). Comparison with a similar event studied earlier, SOL2011–02–28T07:34 [1], suggests that the region of compression and shock could be due to a transient (impulsive) action exerted on the surrounding plasma by an eruptive, high-temperature magnetic rope. The initial instability and eruption of this rope could be initiated by emerging magnetic flux, and its heating from magnetic reconnection. The cessation of the eruption of the rope could result from its interaction with surrounding magnetic structures (coronal loops).
Astronomy Reports | 2016
V. G. Eselevich; M. V. Eselevich; I. V. Zimovets; G. V. Rudenko
An “impulsive” coronal mass ejection (CME) observed on August 24, 2014 is analyzed using ultraviolet images obtained in the SDO/AIA 193, 304, 1600, and 1700 Å channels and Hα (6562.8 Å) data obtained with the EI Teide and Big Bear telescopes. The formation of this impulsive CME was related to a magnetic tube (rope) moving with a velocity of ≈35 km/s and containing plasma that was cooler than the photospheric material. Moving in the corona, the magnetic tube collides with a quasi-stationary coronal magnetic rope, with its two bases rooted in the photosphere. This interaction results in the formation of the CME, with the surface of the coronal magnetic rope becoming the CME frontal structure. According to SDO/HMI data, no enhancements or changes in magnetic flux were detected in the vicinity of the CME bases during its formation. This may support the hypothesis that the magnetic tube starts its motion from layers in the vicinity of the temperature minimum.
Cosmic Research | 2015
V. A. Parkhomov; N. L. Borodkova; V. G. Eselevich; M. V. Eselevich
In a magnetic cloud, which is part of a sporadic solar wind on the Earth orbit, against the background of a constant solar wind velocity, abrupt jumps in the solar wind density and antiphase, highly correlated (correlation coefficient R∼−0.9) variations of the magnitude of the strength of the interplanetary magnetic field were detected. Analysis has shown that these jumps, which represent fibers or eruptive protuberances, result, when interacting with the Earth magnetosphere, in the development of a high-latitude magnetic disturbance, starting on the dayside and propagating into the morning and evening sides of the magnetosphere. The processes, developing in the auroral region during this disturbance, are similar to processes occurring during the substorm, but they are characterized by a shorter duration and lower value of released energy.
Geomagnetism and Aeronomy | 2007
M. V. Eselevich; V. G. Eselevich
It has been indicated that the cross section of the streamer belt in the solar corona and its extension in the heliosphere—heliospheric plasma sheet (HPS)—have the form of two radially oriented closely located (at a distance of d ≈ 2.0–2.5° in the heliocentric coordinate system) rays with increased and generally different densities. The angular dimensions of the rays are ≈d. The neutral line of the magnetic field in the corona and the related sector boundary in the Earth’s orbit are located between the peaks of densities of these two rays. In the events, during which the true sector boundary coincides with the heliospheric current sheet, the transverse structure of the streamer belt in the heliosphere (or the HPS structure) is quasistationary; i.e., this structure slightly changes when the solar wind moves from the Sun to the Earth in, at least, 50% of cases. A hypothesis that a slow solar wind, flowing in the rays with increased density of the streamer belt, is probably generated on the Sun’s surface rather than at the top of the helmet, as was assumed in [Wang et al., 2000], is put forward.
Cosmic Research | 2017
O. V. Sapunova; N. L. Borodkova; V. G. Eselevich; G. N. Zastenker; Yu. I. Yermolaev
The paper is concerned with studying the thickness of fronts of 38 interplanetary shocks detected by the BMSW instrument, which is a part of the scientific payload of the SPEKTR-R spacecraft, which was launched into a highly elliptical orbit in 2011. The main parameters of the interplanetary shocks have been calculated as follows: the ratio of thermal pressure to magnetic pressure before the front β, the angle between the shock front normal and the undisturbed magnetic field θBn, the ratio of the shock propagation velocity to the magnetosonic velocity in the undisturbed region Mms, and the shock front velocity relative to the Earth. It has been shown that the front thickness determined from the plasma parameters approximately matches the front thickness obtained from the magnetic field measurements and lies between 0.5 and 5 proton inertial lengths. In some events, the oscillations have been observed (upstream and downstream of the shock) in plasma parameters and in the magnetic field data. The length has been found to be between 0.5 and 6 proton inertial lengths for the preceding oscillations and between 0.5 and 10 proton inertial lengths for the following oscillations. The average value of the proton inertial length is 62 km.