V.I.D. Ros
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V.I.D. Ros.
Molecular Ecology | 2013
Stineke van Houte; V.I.D. Ros; Monique M. van Oers
Parasitic infections are often followed by changes in host behaviour. Numerous and exquisite examples of such behavioural alterations are known, covering a broad spectrum of parasites and hosts. Most descriptions of such parasite‐induced changes in host behaviour are observational reports, while experimentally confirmed examples of parasite genes inducing these changes are limited. In this study, we review changes in invertebrate host behaviour observed upon infection by parasites and discuss such changes in an evolutionary context. We then explore possible mechanisms involved in parasite‐induced changes in host behaviour. Genes and pathways known to play a role in invertebrate behaviour are reviewed, and we hypothesize how parasites (may) affect these pathways. This review provides the state of the art in this exciting, interdisciplinary field by exploring possible pathways triggered in hosts, suggesting methodologies to unravel the molecular mechanisms that lead to changes in host behaviour.
PLOS ONE | 2012
Stineke van Houte; V.I.D. Ros; Tom G. Mastenbroek; Nadia J. Vendrig; Kelli Hoover; Jeroen Spitzen; Monique M. van Oers
Many parasites manipulate host behavior to increase the probability of transmission. To date, direct evidence for parasitic genes underlying such behavioral manipulations is scarce. Here we show that the baculovirus Autographa californica nuclear polyhedrovirus (AcMNPV) induces hyperactive behavior in Spodoptera exigua larvae at three days after infection. Furthermore, we identify the viral protein tyrosine phosphatase (ptp) gene as a key player in the induction of hyperactivity in larvae, and show that mutating the catalytic site of the encoded phosphatase enzyme prevents this induced behavior. Phylogenetic inference points at a lepidopteran origin of the ptp gene and shows that this gene is well-conserved in a group of related baculoviruses. Our study suggests that ptp-induced behavioral manipulation is an evolutionarily conserved strategy of this group of baculoviruses to enhance virus transmission, and represents an example of the extended phenotype concept. Overall, these data provide a firm base for a deeper understanding of the mechanisms behind baculovirus-induced insect behavior.
Biology Letters | 2014
S. van Houte; M.M. van Oers; Y. Han; Just M. Vlak; V.I.D. Ros
Many parasites manipulate host behaviour to enhance parasite transmission and survival. A fascinating example is baculoviruses, which often induce death in caterpillar hosts at elevated positions (‘tree-top’ disease). To date, little is known about the underlying processes leading to this adaptive host manipulation. Here, we show that the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) triggers a positive phototactic response in S. exigua larvae prior to death and causes the caterpillars to die at elevated positions. This light-dependent climbing behaviour is specific for infected larvae, as movement of uninfected caterpillars during larval development was light-independent. We hypothesize that upon infection, SeMNPV captures a host pathway involved in phototaxis and/or light perception to induce this remarkable behavioural change.
Molecular Ecology | 2015
V.I.D. Ros; Stineke van Houte; Lia Hemerik; Monique M. van Oers
Many parasites alter host behaviour to enhance their chance of transmission. Recently, the ecdysteroid UDP‐glucosyl transferase (egt) gene from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) was identified to induce tree‐top disease in L. dispar larvae. Infected gypsy moth larvae died at elevated positions (hence the term tree‐top disease), which is thought to promote dissemination of the virus to lower foliage. It is, however, unknown whether egt has a conserved role among baculoviruses in inducing tree‐top disease. Here, we studied tree‐top disease induced by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in two different host insects, Trichoplusia ni and Spodoptera exigua, and we investigated the role of the viral egt gene therein. AcMNPV induced tree‐top disease in both T. ni and S. exigua larvae, although in S. exigua a moulting‐dependent effect was seen. Those S. exigua larvae undergoing a larval moult during the infection process died at elevated positions, while larvae that did not moult after infection died at low positions. For both T. ni and S. exigua, infection with a mutant AcMNPV lacking egt did not change the position where the larvae died. We conclude that egt has no highly conserved role in inducing tree‐top disease in lepidopteran larvae. The conclusion that egt is a ‘gene for an extended phenotype’ is therefore not generally applicable for all baculovirus–host interactions. We hypothesize that in some baculovirus–host systems (including LdMNPV in L. dispar), an effect of egt on tree‐top disease can be observed through indirect effects of egt on moulting‐related climbing behaviour.
Naturwissenschaften | 2014
S. van Houte; V.I.D. Ros; M.M. van Oers
Although many parasites are known to manipulate the behavior of their hosts, the mechanisms underlying such manipulations are largely unknown. Baculoviruses manipulate the behavior of caterpillar hosts by inducing hyperactivity and by inducing climbing behavior leading to death at elevated positions (tree-top disease or Wipfelkrankheit). Whether hyperactivity and tree-top disease are independent manipulative strategies of the virus is unclear. Recently, we demonstrated the involvement of the protein tyrosine phosphatase (ptp) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in the induction of hyperactivity in Spodoptera exigua larvae. Here we show that AcMNPV ptp is not required for tree-top disease, indicating that in S. exigua baculovirus-induced hyperactivity and tree-top disease are independently induced behaviors that are governed by distinct mechanisms.
Journal of Invertebrate Pathology | 2013
Henry M. Kariithi; M. Ahmadi; Andrew G. Parker; G. Franz; V.I.D. Ros; I. Haq; A.M. Elashry; Just M. Vlak; Max Bergoin; Marc J.B. Vreysen; Adly M.M. Abd-Alla
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a rod-shaped, non-occluded double-stranded DNA virus that causes salivary gland hypertrophy (SGH) and reduced fecundity in the tsetse fly G. pallidipes. High GpSGHV prevalence (up to 80%) makes it impossible to mass-rear G. pallidipes colonies for the sterile insect technique (SIT). To evaluate the feasibility of molecular-based GpSGHV management strategies, we investigated the prevalence and genetic diversity of GpSGHV in wild populations of G. pallidipes collected from ten geographical locations in eastern and southern Africa. Virus diversity was examined using a total sequence of 1497 nucleotides (≈ 1% of the GpSGHV genome) from five putative conserved ORFs, p74, pif1, pif2, pif3 and dnapol. Overall, 34.08% of the analyzed flies (n=1972) tested positive by nested PCR. GpSGHV prevalence varied from 2% to 100% from one location to another but phylogenetic and gene genealogy analyses using concatenated sequences of the five putative ORFs revealed low virus diversity. Although no correlation of the virus diversity to geographical locations was detected, the GpSGHV haplotypes could be assigned to one of two distinct clades. The reference (Tororo) haplotype was the most widely distributed, and was shared by 47 individuals in seven of the 11 locations. The Ethiopian haplotypes were restricted to one clade, and showed the highest divergence (with 14-16 single nucleotide mutation steps) from the reference haplotype. The current study suggests that the proposed molecular-based virus management strategies have a good prospect of working throughout eastern and southern Africa due to the low diversity of the GpSGHV strains.
Insect Molecular Biology | 2011
M.A. Biernat; V.I.D. Ros; Just M. Vlak; M.M. van Oers
Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)‐induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and characterized. Lepidopteran and baculovirus phr genes each form a monophyletic group, and together form a well‐supported clade within the insect photolyases. This suggests that baculoviruses obtained their phr genes from an ancestral lepidopteran insect host. A likely evolutionary scenario is that a granulovirus, Spodoptera litura GV or a direct ancestor, obtained a phr gene. Subsequently, it was horizontally transferred from this granulovirus to several group II nucleopolyhedroviruses (NPVs), including those that infect noctuids of the Plusiinae subfamily.
Journal of Invertebrate Pathology | 2017
Gabriela Maciel-Vergara; V.I.D. Ros
The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics.
Host Manipulations by Parasites and Viruses | 2015
Y. Han; M.M. van Oers; C.G.J. van Houte; V.I.D. Ros
Increasing evidence shows that host behaviour often changes following infection by a variety of parasites, including viruses. The altered behaviour is either induced by the parasites to enhance parasite survival and transmission, or is a response of the host to avoid spread of infection in the host population. Given the high prevalence of viruses among insects, in a virus-host interaction or in a virus-vector relationship, viruses might have a huge impact on insect behaviour. This review first describes known examples of changes in insect behaviour upon virus infection. Although scarce, any known information on the underlying mechanism is also included. Special attention is given to baculoviruses and the hyperactivity and tree-top disease that they induce in their caterpillar hosts, so far the best studied systems in this research field. Subsequently, we discuss the virus-induced changes in insect behaviour from an ecological and evolutionary point of view.
Insects | 2015
Y. Han; Stineke van Houte; Gerben F. Drees; Monique M. van Oers; V.I.D. Ros
Many parasites enhance their dispersal and transmission by manipulating host behaviour. One intriguing example concerns baculoviruses that induce hyperactivity and tree-top disease (i.e., climbing to elevated positions prior to death) in their caterpillar hosts. Little is known about the underlying mechanisms of such parasite-induced behavioural changes. Here, we studied the role of the ecdysteroid UDP-glucosyltransferase (egt) gene of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in tree-top disease in S. exigua larvae. Larvae infected with a mutant virus lacking the egt gene exhibited a shorter time to death and died before the induction of tree-top disease. Moreover, deletion of either the open reading frame or the ATG start codon of the egt gene prevented tree-top disease, indicating that the EGT protein is involved in this process. We hypothesize that SeMNPV EGT facilitates tree-top disease in S. exigua larvae by prolonging the larval time to death. Additionally, we discuss the role of egt in baculovirus-induced tree-top disease.