Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Ramanathan is active.

Publication


Featured researches published by V. Ramanathan.


Science | 1989

Cloud-radiative forcing and climate : Results from the Earth Radiation Budget Experiment

V. Ramanathan; Robert D. Cess; Edwin F. Harrison; Patrick Minnis; Bruce R. Barkstrom; E. Ahmad; Dennis L. Hartmann

The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in 1984. For the April 1985 period, the global shortwave cloud forcing [-44.5 watts per square meter (W/m2)] due to the enhancement of planetary albedo, exceeded in magnitude the longwave cloud forcing (31.3 W/m2) resulting from the greenhouse effect of clouds. Thus, clouds had a net cooling effect on the earth. This cooling effect is large over the mid-and high-latitude oceans, with values reaching -100 W/m2. The monthly averaged longwave cloud forcing reached maximum values of 50 to 100 W/m2 over the convectively disturbed regions of the tropics. However, this heating effect is nearly canceled by a correspondingly large negative shortwave cloud forcing, which indicates the delicately balanced state of the tropics. The size of the observed net cloud forcing is about four times as large as the expected value of radiative forcing from a doubling of CO2. The shortwave and longwave components of cloud forcing are about ten times as large as those for a CO2 doubling. Hence, small changes in the cloud-radiative forcing fields can play a significant role as a climate feedback mechanism. For example, during past glaciations a migration toward the equator of the field of strong, negative cloud-radiative forcing, in response to a similar migration of cooler waters, could have significantly amplified oceanic cooling and continental glaciation.


Journal of Geophysical Research | 2001

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze

V. Ramanathan; Paul J. Crutzen; J. Lelieveld; A. P. Mitra; Dietrich Althausen; James R. Anderson; Meinrat O. Andreae; Will Cantrell; Glen R. Cass; Chul Eddy Chung; Antony D. Clarke; James A. Coakley; W. D. Collins; William C. Conant; F. Dulac; Jost Heintzenberg; Andrew J. Heymsfield; Brent N. Holben; S. Howell; James G. Hudson; A. Jayaraman; Jeffrey T. Kiehl; T. N. Krishnamurti; Dan Lubin; Greg M. McFarquhar; T. Novakov; John A. Ogren; I. A. Podgorny; Kimberly A. Prather; Kory J. Priestley

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (-20±4 W m^(−2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.


Science | 2012

Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

Drew T. Shindell; Johan Kuylenstierna; E. Vignati; Rita Van Dingenen; M. Amann; Z. Klimont; Susan C. Anenberg; Nicholas Z. Muller; Greet Janssens-Maenhout; Frank Raes; Joel Schwartz; Greg Faluvegi; Luca Pozzoli; Kaarle Kupiainen; Lena Höglund-Isaksson; Lisa Emberson; David G. Streets; V. Ramanathan; Kevin Hicks; N.T. Kim Oanh; George Milly; Martin L. Williams; Volodymyr Demkine; D. Fowler

Why Wait? Tropospheric ozone can be dangerous to human health, can be harmful to vegetation, and is a major contributor to climate warming. Black carbon also has significant negative effects on health and air quality and causes warming of the atmosphere. Shindell et al. (p. 183) present results of an analysis of emissions, atmospheric processes, and impacts for each of these pollutants. Seven measures were identified that, if rapidly implemented, would significantly reduce global warming over the next 50 years, with the potential to prevent millions of deaths worldwide from outdoor air pollution. Furthermore, some crop yields could be improved by decreasing agricultural damage. Most of the measures thus appear to have economic benefits well above the cost of their implementation. Reducing anthropogenic emissions of methane and black carbon would have multiple climate and health benefits. Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at


Nature | 2007

Warming trends in Asia amplified by brown cloud solar absorption

V. Ramanathan; Muvva Venkata Ramana; G. C. Roberts; Dohyeong Kim; Craig Corrigan; Chul Eddy Chung; David Winker

700 to


web science | 2011

The Anthropocene: From Global Change to Planetary Stewardship

Will Steffen; Åsa Persson; Lisa Deutsch; Jan Zalasiewicz; Mark Williams; Katherine Richardson; Carole L. Crumley; Paul J. Crutzen; Carl Folke; Line J. Gordon; Mario J. Molina; V. Ramanathan; Johan Rockström; Marten Scheffer; Hans Joachim Schellnhuber; Uno Svedin

5000 per metric ton, which is well above typical marginal abatement costs (less than


Nature | 2000

Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface

S. K. Satheesh; V. Ramanathan

250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.


Science | 1995

Absorption of Solar Radiation by Clouds: Observations Versus Models

Robert D. Cess; Minghua Zhang; Patrick Minnis; L. Corsetti; Ellsworth G. Dutton; Bruce Forgan; D. P. Garber; W. L. Gates; James J. Hack; Edwin F. Harrison; X. Jing; Jeffrey T. Kiehl; C. N. Long; J.-J. Morcrette; G. L. Potter; V. Ramanathan; B. Subasilar; C. H. Whitlock; David F. Young; Y. Zhou

Atmospheric brown clouds are mostly the result of biomass burning and fossil fuel consumption. They consist of a mixture of light-absorbing and light-scattering aerosols and therefore contribute to atmospheric solar heating and surface cooling. The sum of the two climate forcing terms—the net aerosol forcing effect—is thought to be negative and may have masked as much as half of the global warming attributed to the recent rapid rise in greenhouse gases. There is, however, at least a fourfold uncertainty in the aerosol forcing effect. Atmospheric solar heating is a significant source of the uncertainty, because current estimates are largely derived from model studies. Here we use three lightweight unmanned aerial vehicles that were vertically stacked between 0.5 and 3 km over the polluted Indian Ocean. These unmanned aerial vehicles deployed miniaturized instruments measuring aerosol concentrations, soot amount and solar fluxes. During 18 flight missions the three unmanned aerial vehicles were flown with a horizontal separation of tens of metres or less and a temporal separation of less than ten seconds, which made it possible to measure the atmospheric solar heating rates directly. We found that atmospheric brown clouds enhanced lower atmospheric solar heating by about 50 per cent. Our general circulation model simulations, which take into account the recently observed widespread occurrence of vertically extended atmospheric brown clouds over the Indian Ocean and Asia, suggest that atmospheric brown clouds contribute as much as the recent increase in anthropogenic greenhouse gases to regional lower atmospheric warming trends. We propose that the combined warming trend of 0.25 K per decade may be sufficient to account for the observed retreat of the Himalayan glaciers.


Journal of Geophysical Research | 2007

Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing

V. Ramanathan; F. Li; Muvva Venkata Ramana; P. S. Praveen; Dohyeong Kim; C. E. Corrigan; Hien Van Nguyen; Elizabeth A. Stone; James J. Schauer; G. R. Carmichael; Bhupesh Adhikary; Soon Chang Yoon

Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geo-engineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.


Science | 1995

Warm pool heat budget and shortwave cloud forcing: A missing physics?

V. Ramanathan; B. Subasilar; Guang J. Zhang; William C. Conant; Robert D. Cess; Jeffrey T. Kiehl; Hartmut Grassl; L. Shi

The effect of radiative forcing by anthropogenic aerosols is one of the largest sources of uncertainty in climate predictions. Direct observations of the forcing are therefore needed, particularly for the poorly understood tropical aerosols. Here we present an observational method for quantifying aerosol forcing to within ±5 per cent. We use calibrated satellite radiation measurements and five independent surface radiometers to quantify the aerosol forcing simultaneously at the Earths surface and the top of the atmosphere over the tropical northern Indian Ocean. In winter, this region is covered by anthropogenic aerosols of sulphate, nitrate, organics, soot and fly ash from the south Asian continent. Accordingly, mean clear-sky solar radiative heating for the winters of 1998 and 1999 decreased at the ocean surface by 12 to 30 W m-2, but only by 4 to 10 W m-2 at the top of the atmosphere. This threefold difference (due largely to solar absorption by soot) and the large magnitude of the observed surface forcing both imply that tropical aerosols might slow down the hydrological cycle.


Science | 1988

The greenhouse theory of climate change - A test by an inadvertent global experiment

V. Ramanathan

There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmospheres energy budget.

Collaboration


Dive into the V. Ramanathan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. E. Corrigan

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert D. Cess

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Chul Eddy Chung

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

I. A. Podgorny

University of California

View shared research outputs
Top Co-Authors

Avatar

I. H. Rehman

The Energy and Resources Institute

View shared research outputs
Top Co-Authors

Avatar

Jeffrey T. Kiehl

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Dohyeong Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge