Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Rana is active.

Publication


Featured researches published by V. Rana.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


The Astrophysical Journal | 2011

AFTERGLOW OBSERVATIONS OF FERMI LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS

S. B. Cenko; Dale A. Frail; Fiona A. Harrison; J. B. Haislip; Daniel E. Reichart; N. Butler; Bethany Elisa Cobb; A. Cucchiara; Edo Berger; J. S. Bloom; P. Chandra; Derek B. Fox; Daniel A. Perley; Jason X. Prochaska; A. V. Filippenko; Karl Glazebrook; Kevin Ivarsen; Mansi M. Kasliwal; S. R. Kulkarni; Aaron Patrick Lacluyze; Sebastian Pedraza Lopez; Adam N. Morgan; Max Pettini; V. Rana

We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs; GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor and Large Area Telescope (LAT) instruments on the Fermi satellite. With its wide spectral bandpass, extending to GeV energies, Fermi is sensitive to GRBs with very large isotropic energy releases (10^(54) erg). Although rare, these events are particularly important for testing GRB central-engine models. When combined with spectroscopic redshifts, our afterglow data for these four events are able to constrain jet collimation angles, the density structure of the circumburst medium, and both the true radiated energy release and the kinetic energy of the outflows. In agreement with our earlier work, we find that the relativistic energy budget of at least one of these events (GRB 090926A) exceeds the canonical value of 10^(51) erg by an order of magnitude. Such energies pose a severe challenge for models in which the GRB is powered by a magnetar or a neutrino-driven collapsar, but remain compatible with theoretical expectations for magnetohydrodynamical collapsar models (e.g., the Blandford-Znajek mechanism). Our jet opening angles (θ) are similar to those found for pre-Fermi GRBs, but the large initial Lorentz factors (Γ_0) inferred from the detection of GeV photons imply θΓ_0 ≈ 70-90, values which are above those predicted in magnetohydrodynamic models of jet acceleration. Finally, we find that these Fermi-LAT events preferentially occur in a low-density circumburst environment, and we speculate that this might result from the lower mass-loss rates of their lower-metallicity progenitor stars. Future studies of Fermi-LAT afterglows at radio wavelengths with the order-of-magnitude improvement in sensitivity offered by the Extended Very Large Array should definitively establish the relativistic energy budgets of these events.


Nature | 2014

Asymmetries in core-collapse supernovae from maps of radioactive 44 Ti in Cassiopeia A

Brian W. Grefenstette; Fiona A. Harrison; S. E. Boggs; Stephen P. Reynolds; Christopher L. Fryer; K. K. Madsen; Daniel R. Wik; Andreas Zoglauer; C I Ellinger; D. M. Alexander; Hongjun An; Didier Barret; Finn Erland Christensen; William W. Craig; K. Forster; P. Giommi; C. J. Hailey; A. Hornstrup; V. M. Kaspi; Takao Kitaguchi; Jason E. Koglin; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; M. Pivovaroff; S. Puccetti; V. Rana; D. Stern; Niels Jørgen Stenfeldt Westergaard

Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which 44Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.


Astrophysical Journal Supplement Series | 2015

CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

Kristin K. Madsen; Fiona A. Harrison; Craig B. Markwardt; Hongjun An; Brian W. Grefenstette; Matteo Bachetti; Hiromasa Miyasaka; Takao Kitaguchi; Varun Bhalerao; S. E. Boggs; Finn Erland Christensen; William W. Craig; Karl Forster; F. Fuerst; Charles J. Hailey; Matteo Perri; S. Puccetti; V. Rana; Daniel Stern; D. J. Walton; Niels Jørgen Stenfeldt Westergaard; William W. Zhang

We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ~10% for all instruments with respect to NuSTAR.


The Astrophysical Journal | 2013

The Ultraluminous X-Ray Sources NGC 1313 X-1 and X-2: A Broadband Study with NuSTAR and XMM-Newton

Matteo Bachetti; V. Rana; D. J. Walton; Didier Barret; Fiona A. Harrison; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Andrew C. Fabian; Felix Fürst; Brian W. Grefenstette; Charles J. Hailey; Ann Hornschemeier; Kristin K. Madsen; Jon M. Miller; Andrew F. Ptak; Daniel Stern; Natalie A. Webb; William W. Zhang

We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ~0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.


Proceedings of SPIE | 2010

The Nuclear Spectroscopic Telescope Array (NuSTAR)

Fiona A. Harrison; S. E. Boggs; Finn Erland Christensen; William W. Craig; Charles J. Hailey; Daniel Stern; William W. Zhang; Lorella Angelini; Hongjun An; Varun Bhalerao; Nicolai F. Brejnholt; Lynn R. Cominsky; W. Rick Cook; Melania Doll; P. Giommi; Brian W. Grefenstette; A. Hornstrup; V. M. Kaspi; Yunjin Kim; Takeo Kitaguchi; Jason E. Koglin; Carl Christian Liebe; Greg M. Madejski; Kristin K. Madsen; Peter H. Mao; David L. Meier; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining the explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a guest observer program will be proposed for an extended mission to expand the range of scientic targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto a solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit, NuSTAR largely avoids SAA passage, and will therefore have low and stable detector backgrounds. The telescope achieves a 10.14-meter focal length through on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFCs High Energy Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.


The Astrophysical Journal | 2014

Broadband X-Ray Spectra of the Ultraluminous X-Ray Source Holmberg IX X-1 Observed with NuSTAR, XMM-Newton, and Suzaku

D. J. Walton; Fiona A. Harrison; Brian W. Grefenstette; Josef M. Miller; Matteo Bachetti; Didier Barret; S. E. Boggs; Finn Erland Christensen; William W. Craig; A. C. Fabian; F. Fuerst; Charles J. Hailey; K. K. Madsen; M. L. Parker; A. Ptak; V. Rana; D. Stern; Natalie A. Webb; William W. Zhang

We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ~30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L_X = (1.90 ± 0.03) × 10^(40) erg s^(–1) to L_X = (3.35 ± 0.03) × 10^(40) erg s^(–1). Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.


The Astrophysical Journal | 2015

Rapid variability of blazar 3C 279 during flaring states in 2013-2014 with joint FERMI-LAT, NuSTAR, SWIFT, and ground-based multi-wavelength observations

M. Hayashida; Krzysztof Nalewajko; G. M. Madejski; Marek Sikora; R. Itoh; M. Ajello; R. D. Blandford; S. Buson; J. Chiang; Yasushi Fukazawa; A. K. Furniss; Claudia M. Urry; I. Hasan; Fiona A. Harrison; D. M. Alexander; M. Baloković; Didier Barret; S. E. Boggs; Finn Erland Christensen; W. W. Craig; K. Forster; Paolo Giommi; Brian W. Grefenstette; C. Hailey; A. Hornstrup; Takao Kitaguchi; Jason E. Koglin; K. K. Madsen; Peter H. Mao; Hiromasa Miyasaka

We report the results of a multiband observing campaign on the famous blazar 3C 279 conducted during a phase of increased activity from 2013 December to 2014 April, including first observations of it with NuSTAR. The gamma-ray emission of the source measured by Fermi-LAT showed multiple distinct flares reaching the highest flux level measured in this object since the beginning of the Fermi mission, with F(E > 100 MeV) of 10^(-5) photons cm^(-2) s^(-1), and with a flux-doubling time scale as short as 2 hr. The gamma-ray spectrum during one of the flares was very hard, with an index of Gamma(gamma) = 1.7 +/- 0.1, which is rarely seen in flat-spectrum radio quasars. The lack of concurrent optical variability implies a very high Compton dominance parameter L-gamma/L-syn > 300. Two 1 day NuSTAR observations with accompanying Swift pointings were separated by 2 weeks, probing different levels of source activity. While the 0.5 - 70 keV X-ray spectrum obtained during the first pointing, and fitted jointly with Swift-XRT is well-described by a simple power law, the second joint observation showed an unusual spectral structure: the spectrum softens by Delta Gamma(X) similar or equal to 0.4 at similar to 4 keV. Modeling the broadband spectral energy distribution during this flare with the standard synchrotron plus inverse-Compton model requires: (1) the location of the gamma-ray emitting region is comparable with the broad-line region radius, (2) a very hard electron energy distribution index p similar or equal to 1, (3) total jet power significantly exceeding the accretion-disk luminosity L-j/L-d greater than or similar to 10, and (4) extremely low jet magnetization with L-B/L-j less than or similar to 10^(-4). We also find that single-zone models that match the observed gamma-ray and optical spectra cannot satisfactorily explain the production of X-ray emission.


The Astrophysical Journal | 2013

An Extremely Luminous and Variable Ultraluminous X-Ray Source in the Outskirts of Circinus Observed with NuSTAR

D. J. Walton; F. Fuerst; Fiona A. Harrison; D. Stern; Matteo Bachetti; Didier Barret; F. E. Bauer; S. E. Boggs; Finn Erland Christensen; William W. Craig; A. C. Fabian; Brian W. Grefenstette; Charles J. Hailey; K. K. Madsen; Josef M. Miller; Andrew F. Ptak; V. Rana; Natalie A. Webb; William W. Zhang

Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ~5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10^(40) erg s^(–1)). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L ∝ T^(1.70±0.17), flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ~90 M_⊙ for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the limits placed on any undetected iron absorption features with the 2013 data set imply that we are not viewing the central regions of Circinus ULX5 through any extreme super-Eddington outflow.


The Astrophysical Journal | 2016

Discovery of Coherent Pulsations from the Ultraluminous X-Ray Source NGC 7793 P13

Felix Fürst; D. J. Walton; Fiona A. Harrison; D. Stern; Didier Barret; M. Brightman; A. C. Fabian; Brian W. Grefenstette; K. K. Madsen; Matthew J. Middleton; Josef M. Miller; Katja Pottschmidt; A. Ptak; V. Rana; N. Webb

We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793 P13. The ≈0.42 s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (≫5σ) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of ≈10^(40) erg s^(-1) (assuming isotropy), it is well above the Eddington limit for a 1.4 M⊙ accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013–2016 period. This spin-up indicates a magnetic field of B ≈ 1.5 × 10^(12) G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.

Collaboration


Dive into the V. Rana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Grefenstette

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Finn Erland Christensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Hailey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Walton

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge