Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Santhakumar is active.

Publication


Featured researches published by V. Santhakumar.


Journal of Medicinal Chemistry | 2016

Discovery of a Potent and Selective Coactivator Associated Arginine Methyltransferase 1 (CARM1) Inhibitor by Virtual Screening

Renato Ferreira de Freitas; Mohammad S. Eram; David Smil; Magdalena M. Szewczyk; Steven Kennedy; Peter J. Brown; V. Santhakumar; Dalia Barsyte-Lovejoy; C.H. Arrowsmith; Masoud Vedadi; Matthieu Schapira

Protein arginine methyltransferases (PRMTs) represent an emerging target class in oncology and other disease areas. So far, the most successful strategy to identify PRMT inhibitors has been to screen large to medium-size chemical libraries. Attempts to develop PRMT inhibitors using receptor-based computational methods have met limited success. Here, using virtual screening approaches, we identify 11 CARM1 (PRMT4) inhibitors with ligand efficiencies ranging from 0.28 to 0.84. CARM1 selective hits were further validated by orthogonal methods. Two structure-based rounds of optimization produced 27 (SGC2085), a CARM1 inhibitor with an IC50 of 50 nM and more than hundred-fold selectivity over other PRMTs. These results indicate that virtual screening strategies can be successfully applied to Rossmann-fold protein methyltransferases.


Journal of Medicinal Chemistry | 2016

Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2

Erik Eggert; Roman Hillig; Silke Koehr; Detlef Stöckigt; Jörg Weiske; Naomi Barak; Jeffrey Mowat; Thomas Brumby; Clara D. Christ; Antonius ter Laak; Tina Lang; Amaury Ernesto Fernandez-Montalvan; Volker Badock; Hilmar Weinmann; Ingo V. Hartung; Dalia Barsyte-Lovejoy; Magdalena M. Szewczyk; Steven Kennedy; Fengling Li; Masoud Vedadi; Peter J. Brown; V. Santhakumar; C.H. Arrowsmith; Timo Stellfeld; Carlo Stresemann

Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.


Nature Chemical Biology | 2017

The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity

Kenneth D. Bromberg; Taylor R H Mitchell; Anup K. Upadhyay; Clarissa G. Jakob; Manisha A Jhala; Kenneth M. Comess; Loren M. Lasko; Conglei Li; Creighton T. Tuzon; Yujia Dai; Fengling Li; Mohammad S. Eram; Alexander Nuber; Niru B. Soni; Vlasios Manaves; Mikkel A. Algire; Ramzi F. Sweis; Maricel Torrent; Gunnar Schotta; Chaohong Sun; Michael R. Michaelides; Alex R Shoemaker; C.H. Arrowsmith; Peter J. Brown; V. Santhakumar; Alberto Martin; Judd C. Rice; Gary G. Chiang; Masoud Vedadi; Dalia Barsyte-Lovejoy

Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.


Journal of Medicinal Chemistry | 2014

Discovery of spirofused piperazine and diazepane amides as selective histamine-3 antagonists with in vivo efficacy in a mouse model of cognition.

Dean G. Brown; Peter R. Bernstein; Andrew Griffin; Steve Wesolowski; Denis Labrecque; Maxime C. Tremblay; Mark Sylvester; Russell C. Mauger; Phillip D. Edwards; Scott Throner; James Folmer; Joseph Cacciola; Clay W Scott; Lois Ann Lazor; Mehrnaz Pourashraf; V. Santhakumar; William Potts; Simon Sydserff; Pascall Giguère; Carine Lévesque; Mohammed Dasser; Thierry Groblewski

A new series of potent and selective histamine-3 receptor (H3R) antagonists was identified on the basis of an azaspiro[2.5]octane carboxamide scaffold. Many scaffold modifications were largely tolerated, resulting in nanomolar-potent compounds in the H3R functional assay. Exemplar compound 6s demonstrated a selective profile against a panel of 144 secondary pharmacological receptors, with activity at only σ2 (62% at 10 μM). Compound 6s demonstrated free-plasma exposures above the IC50 (∼50×) with a brain-to-plasma ratio of ∼3 following intravenous dosing in mice. At three doses tested in the mouse novel object recognition model (1, 3, and 10 mg/kg s.c.), 6s demonstrated a statistically significant response compared with the control group. This series represents a new scaffold of H3 receptor antagonists that demonstrates in vivo exposure and efficacy in an animal model of cognition.


MedChemComm | 2016

Design and synthesis of selective, small molecule inhibitors of coactivator-associated arginine methyltransferase 1 (CARM1)

H. Ü. Kaniskan; Mohammad S. Eram; Jing Liu; David Smil; M. L. Martini; Yudao Shen; V. Santhakumar; Peter J. Brown; C.H. Arrowsmith; Masoud Vedadi; Jian Jin

Coactivator-associated arginine methyltransferase 1 (CARM1) is a type I protein arginine methyltransferase (PRMT) that catalyzes the conversion of arginine into monomethylarginine (MMA) and further into asymmetric dimethylarginine (ADMA). CARM1 methylates histone 3 arginines 17 and 26, as well as numerous non-histone proteins including CBP/p300, SRC-3, NCOA2, PABP1, and SAP49, while also functioning as a coactivator for various proteins that have been linked to cancer such as p53, NF-κβ, β-catenin, E2F1 and steroid hormone receptor ERα. As a result, CARM1 is involved in transcriptional activation, cellular differentiation, cell cycle progression, RNA splicing and DNA damage response. It has been associated with several human cancers including breast, colon, prostate and lung cancers and thus, is a potential oncological target. Herein, we present the design and synthesis of a series of CARM1 inhibitors. Based on a fragment hit, we discovered compound 9 as a potent inhibitor that displayed selectivity for CARM1 over other PRMTs.


Bioorganic & Medicinal Chemistry | 2017

Discovery and structure activity relationship of the first potent cryptosporidium FIKK kinase inhibitor

Khan T. Osman; Juntao Ye; Zhihao Shi; Christina Toker; Diogo Lovato; Rajiv S. Jumani; William J. Zuercher; Christopher D. Huston; A. Edwards; Mark Lautens; V. Santhakumar; Raymond Hui

FIKKs are parasite-specific protein kinases with distinctive sequence motifs and their biological roles have not been completely elucidated. Here, we report the first potent Cryptosporidium FIKK (CpFIKK) inhibitor. We identified 4b as a potent (IC50=0.2nM) inhibitor of CpFIKK catalytic activity. In addition, we identified both CpCDPK1 selective as well as dually acting CpFIKK-CDPK1 inhibitors from the same structural class of compounds. We evaluated these CpFIKK inhibitors for inhibition of parasite growth in vitro. The observed effects on parasite growth did not correlate with CpFIKK inhibition, suggesting that CpFIKK may not be involved in parasite growth.


Journal of Medicinal Chemistry | 2017

Small Molecule Antagonists of the Interaction between the Histone Deacetylase 6 Zinc-Finger Domain and Ubiquitin

Rachel Harding; Renato Ferreira de Freitas; P. Collins; Ivan Franzoni; M. Ravichandran; Hui Ouyang; Kevin A. Juarez-Ornelas; Mark Lautens; Matthieu Schapira; Frank von Delft; V. Santhakumar; C.H. Arrowsmith

Inhibitors of HDAC6 have attractive potential in numerous cancers. HDAC6 inhibitors to date target the catalytic domains, but targeting the unique zinc-finger ubiquitin-binding domain (Zf-UBD) of HDAC6 may be an attractive alternative strategy. We developed X-ray crystallography and biophysical assays to identify and characterize small molecules capable of binding to the Zf-UBD and competing with ubiquitin binding. Our results revealed two adjacent ligand-able pockets of HDAC6 Zf-UBD and the first functional ligands for this domain.


Journal of Medicinal Chemistry | 2018

Identification and Structure-Activity Relationship of HDAC6 Zinc-Finger Ubiquitin Binding Domain Inhibitors.

Renato Ferreira de Freitas; Rachel Harding; Ivan Franzoni; M. Ravichandran; M.K. Mann; Hui Ouyang; Mark Lautens; V. Santhakumar; Cheryl H. Arrowsmith; Matthieu Schapira

HDAC6 plays a central role in the recruitment of protein aggregates for lysosomal degradation and is a promising target for combination therapy with proteasome inhibitors in multiple myeloma. Pharmacologically displacing ubiquitin from the zinc-finger ubiquitin-binding domain (ZnF-UBD) of HDAC6 is an underexplored alternative to catalytic inhibition. Here, we present the discovery of an HDAC6 ZnF-UBD-focused chemical series and its progression from virtual screening hits to low micromolar inhibitors. A carboxylate mimicking the C-terminal extremity of ubiquitin, and an extended aromatic system stacking with W1182 and R1155, are necessary for activity. One of the compounds induced a conformational remodeling of the binding site where the primary binding pocket opens up onto a ligand-able secondary pocket that may be exploited to increase potency. The preliminary structure-activity relationship accompanied by nine crystal structures should enable further optimization into a chemical probe to investigate the merit of targeting the ZnF-UBD of HDAC6 in multiple myeloma and other diseases.


Archive | 2018

Crystal structure of fragment 2-(Benzo[d]thiazol-2-yl)acetic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain

Rachel Harding; L. Halabelian; R. Ferreira de Freitas; M. Ravichandran; V. Santhakumar; Matthieu Schapira; C. Bountra; A.M. Edwards; C.M. Arrowsmith


Archive | 2018

Crystal structure of fragment 3-(1-Methyl-2-oxo-1,2-dihydroquinoxalin-3-yl)propionic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain

Rachel Harding; L. Halabelian; R. Ferreira de Freitas; Ivan Franzoni; M. Ravichandran; Mark Lautens; V. Santhakumar; Matthieu Schapira; C. Bountra; A.M. Edwards; C.M. Arrowsmith

Collaboration


Dive into the V. Santhakumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Douangamath

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge