V. Yershov
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Yershov.
Monthly Notices of the Royal Astronomical Society | 2010
Alice A. Breeveld; P. A. Curran; Erik Andrew Hoversten; S. Koch; Wayne B. Landsman; F. E. Marshall; M. J. Page; T. S. Poole; P. W. A. Roming; Penelope Smith; Martin D. Still; V. Yershov; A. J. Blustin; Peter J. Brown; Caryl Gronwall; S. T. Holland; N. P. M. Kuin; Katherine E. McGowan; S. Rosen; P. T. Boyd; Patrick S. Broos; Michael P. Carter; M. M. Chester; Bruce R. Hancock; H. E. Huckle; Stefan Immler; M. V. Ivanushkina; Tracy L. M. Kennedy; K. O. Mason; Adam N. Morgan
The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large-scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case, we describe any impact on UVOT measurements, whether any correction is applied in the standard pipeline data processing or whether further steps are recommended.
Monthly Notices of the Royal Astronomical Society | 2009
N. Rea; G. L. Israel; R. Turolla; P. Esposito; S. Mereghetti; Diego Gotz; S. Zane; A. Tiengo; K. Hurley; M. Feroci; Martin D. Still; V. Yershov; C. Winkler; Rosalba Perna; F. Bernardini; P. Ubertini; L. Stella; Sergio Campana; M. van der Klis; Paul M. Woods
We report here on the outburst onset and evolution of the new soft gamma-ray repeater SGR 0501+4516. We monitored the new SGR with XMM- Newton starting on 2008 August 23, 1 day after the source became burst active, and continuing with four more observations in the following month, with the last one on 2008 September 30. Combining the data with the Swift X-ray telescope (Swift-XRT) and Suzaku data, we modelled the outburst decay over a 3-month period, and we found that the source flux decreased exponentially with a time-scale of t(c) = 23.8 d. In the first XMM-Newton observation, a large number of short X-ray bursts were observed, the rate of which decayed drastically in the following observations. We found large changes in the spectral and timing behaviour of the source during the first month of the outburst decay, with softening emission as the flux decayed, and the non-thermal soft X-ray spectral component fading faster than the thermal one. Almost simultaneously to our second and fourth XMM-Newton observations (on 2008 August 29 and September 2), we observed the source in the hard X-ray range with INTEGRAL, which clearly detected the source up to similar to 100 keV in the first pointing, while giving only upper limits during the second pointing, discovering a variable hard X-ray component fading in less than 10 days after the bursting activation. We performed a phase-coherent X-ray timing analysis over about 160 days starting with the burst activation and found evidence of a strong second derivative period component [(sic) = -1.6(4) x 10(-19) s s(-2)]. Thanks to the phase connection, we were able to study the phase-resolved spectral evolution of SGR 0501+ 4516 in great detail. We also report on the ROSAT quiescent source data, taken back in 1992 when the source exhibits a flux similar to 80 times lower than that measured during the outburst, and a rather soft, thermal spectrum.
Monthly Notices of the Royal Astronomical Society | 2012
Mat Page; C. Brindle; A. Talavera; Martin D. Still; S. R. Rosen; V. Yershov; H. Ziaeepour; K. O. Mason; Mark Cropper; Alice A. Breeveld; N. Loiseau; R. P. Mignani; Alistair M. S. Smith; Paul Murdin
The XMM–Newton Serendipitous Ultraviolet Source Survey (XMM-SUSS) is a catalogue of ultraviolet (UV) sources detected serendipitously by the Optical Monitor (XMM-OM) on board the XMM–Newton observatory. The catalogue contains UV-detected sources collected from 2417 XMM-OM observations in one to six broad-band UV and optical filters, made between 2000 February 24 and 2007 March 29. The primary contents of the catalogue are source positions, magnitudes and fluxes in one to six passbands, and these are accompanied by profile diagnostics and variability statistics. XMM-SUSS is populated by 753 578 UV source detections above a 3σ signal-to-noise ratio threshold limit which relate to 624 049 unique objects. Taking account of substantial overlaps between observations, the net sky area covered is 29–54 deg2, depending on UV filter. The magnitude distributions peak at mAB = 20.2, 20.9 and 21.2 in UVW2 (λeff = 2120 A), UVM2 (λeff = 2310 A) and UVW1 (λeff = 2910 A), respectively. More than 10 per cent of the sources have been visited more than once using the same filter during XMM–Newton operation, and >20 per cent of sources are observed more than once per filter during an individual visit. Consequently, the scope for science based on temporal source variability on time-scales of hours to years is broad. By comparison with other astrophysical catalogues we test the accuracy of the source measurements and define the nature of the serendipitous UV XMM-OM source sample. The distributions of source colours in the UV and optical filters are shown together with the expected loci of stars and galaxies, and indicate that sources which are detected in multiple UV bands are predominantly star-forming galaxies and stars of type G or earlier.
IEEE Transactions on Geoscience and Remote Sensing | 2014
Daniel Fisher; Jan-Peter Muller; V. Yershov
The longevity and dispersion of smoke and associated chemical constituents released from wildfire events are dependent on several factors, crucially including the height at which the smoke is injected into the atmosphere. The aim here is to provide improved emission data for the initialization of chemical transport models in order to better predict aerosol and trace gas dispersion following injection into the free atmosphere. A new stereo-matching algorithm, named M6, which can effectively resolve smoke plume injection heights (SPIH), is presented here. M6 is extensively validated against two alternative spaceborne earth observation SPIH data sources and demonstrates good agreement. Further, due to the spectral and dual-view configuration of the Advanced Along-Track Scanning Radiometer imaging system, it is possible to automatically differentiate smoke from other atmospheric features effectively-a feat, which currently no other algorithm can achieve. Additionally, as the M6 algorithm shares a heritage with the other M-series matchers, it is here compared against one of its predecessors, M4, which, for the determination of SPIH, M6 is shown to substantially outperform.
Monthly Notices of the Royal Astronomical Society | 2013
M. J. Page; N. P. M. Kuin; Alice A. Breeveld; Bruce R. Hancock; S. T. Holland; F. E. Marshall; S. R. Oates; P. W. A. Roming; Michael Hiram Siegel; Penelope Smith; Michael P. Carter; M. De Pasquale; M. Symeonidis; V. Yershov; A. P. Beardmore
The dynamic range of photon counting micro-channel-plate (MCP) intensified charged-coupled device (CCD) instruments such as the Swift Ultraviolet/Optical Telescope (UVOT) and the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded by the CCD. Photons which arrive during the brief period in which the image frame is transferred for read out of the CCD are displaced in the transfer direction in the recorded images. For sufficiently bright sources, these displaced counts form read-out streaks. Using UVOT observations of Tycho-2 stars, we investigate the use of these read-out streaks to obtain photometry for sources which are too bright (and hence have too much coincidence loss) for normal aperture photometry to be reliable. For read-out-streak photometry, the bright-source limiting factor is coincidence loss within the MCPs rather than the CCD. We find that photometric measurements can be obtained for stars up to 2.4 magnitudes brighter than the usual full-frame coincidence-loss limit by using the read-out streaks. The resulting bright-limit Vega magnitudes in the UVOT passbands are UVW2=8.80, UVM2=8.27, UVW1=8.86, u=9.76, b=10.53, v=9.31 and White=11.71; these limits are independent of the windowing mode of the camera. We find that a photometric precision of 0.1 mag can be achieved through read-out streak measurements. A suitable method for the measurement of read-out streaks is described and all necessary calibration factors are given.
Monthly Notices of the Royal Astronomical Society | 2015
Susan Hutton; Ignacio Ferreras; V. Yershov
We use near ultraviolet and optical photometry to investigate the dust properties in the nearby starburst galaxy M82. By combining imaging from the Swift/UVOT instrument and optical data from the Sloan Digital Sky Survey, we derive the extinction curve parameterized by the standard RV factor, and the strength of the NUV 2175 A feature { quantied by a parameter B { out to projected galactocentric distances of 4 kpc. Our analysis is robust against possible degeneracies from the properties of the underlying stellar populations. Both B and RV correlate with galactocentric distance, revealing a systematic trend of the dust properties. Our results conrm previous ndings that dust in M82 is better t by a Milky Way standard extinction curve (Hutton et al.), in contrast to a Calzetti law. We nd a strong correlation between RV and B, towards a stronger NUV bump in regions with higher RV , possibly reecting a distribution with larger dust grain sizes. The data we use were taken before SN2014J, and therefore can be used to probe the properties of the interstellar medium before the event. Our RV values around the position of the supernova are signicantly higher than recent measurements post-SN2014J (RV 1:4). This result is consistent with a signicant change in the dust properties after the supernova event, either from disruption of large grains or from the contribution by an intrinsic circumstellar component. Intrinsic variations among supernovae not accounted for could also give rise to this mismatch.
Monthly Notices of the Royal Astronomical Society | 2012
V. Yershov; V. V. Orlov; A. A. Raikov
Redshifts of a supernova (SN) and gamma-ray burst (GRB) samples are compared with the pixel temperatures of the Wilkinson Microwave Anisotropy Probe (WMAP) seven-years data, the pixels locations corresponding to the SN and GRB sky coordinates. We have found a statistically significant correlation of the SN redshifts with the WMAP data, the average temperature deviation being +29.9 ± 4.4 �K for the redshifts z ranging from 0.5 to 1.0 and +8.6 ± 1.3 �K for z 2 (0.0,0.4). The latter value accords with the theoretical estimates for the distortion of the cosmic microwave background due to the integrated Sachs-Wolfe effect, whereas the larger anomaly for higher redshifts should be studied in more detail in the future.
Monthly Notices of the Royal Astronomical Society | 2014
V. Yershov; V. V. Orlov; A. A. Raikov
By using the Planck map of the cosmic microwave background (CMB) radiation we have checked and confirmed the existence of a correlation between supernova (SN) redshifts,
arXiv: Instrumentation and Methods for Astrophysics | 2010
Alice A. Breeveld; P. A. Curran; Erik Andrew Hoversten; S. Koch; Wayne B. Landsman; F. E. Marshall; M. J. Page; T. S. Poole; P. W. A. Roming; Penelope Smith; V. Yershov; Alexander J. Blustin; Peter J. Brown; Caryl Gronwall; S. T. Holland; N. P. M. Kuin; Katherine E. McGowan; S. Rosen; P. T. Boyd; Patrick S. Broos; Michael P. Carter; M. M. Chester; Bruce R. Hancock; Howard E. Huckle; Stefan Immler; M. V. Ivanushkina; Tracy L. M. Kennedy; K. Mason; Adam N. Morgan; S. R. Oates
z_{\rm SN}
Monthly Notices of the Royal Astronomical Society | 2017
M. J. Page; N. Chan; Alice A. Breeveld; A. Talavera; V. Yershov; Tracy L. M. Kennedy; N. P. M. Kuin; Bruce R. Hancock; Penelope Smith; Michael P. Carter
, and CMB temperature fluctuations at the SNe locations,