Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vaclav Ourednik is active.

Publication


Featured researches published by Vaclav Ourednik.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells

D. Eugene Redmond; Kimberly B. Bjugstad; Yang D. Teng; Vaclav Ourednik; Jitka Ourednik; Dustin R. Wakeman; Xuejun H. Parsons; Rodolfo Gonzalez; Barbara C. Blanchard; Seung U. Kim; Zezong Gu; Stuart A. Lipton; Eleni A. Markakis; Robert H. Roth; John D. Elsworth; John R. Sladek; Richard L. Sidman; Evan Y. Snyder

Stem cells have been widely assumed to be capable of replacing lost or damaged cells in a number of diseases, including Parkinsons disease (PD), in which neurons of the substantia nigra (SN) die and fail to provide the neurotransmitter, dopamine (DA), to the striatum. We report that undifferentiated human neural stem cells (hNSCs) implanted into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Parkinsonian primates survived, migrated, and had a functional impact as assessed quantitatively by behavioral improvement in this DA-deficit model, in which Parkinsonian signs directly correlate to reduced DA levels. A small number of hNSC progeny differentiated into tyrosine hydroxylase (TH) and/or dopamine transporter (DAT) immunopositive cells, suggesting that the microenvironment within and around the lesioned adult host SN still permits development of a DA phenotype by responsive progenitor cells. A much larger number of hNSC-derived cells that did not express neuronal or DA markers was found arrayed along the persisting nigrostriatal path, juxtaposed with host cells. These hNSCs, which express DA-protective factors, were therefore well positioned to influence host TH+ cells and mediate other homeostatic adjustments, as reflected in a return to baseline endogenous neuronal number-to-size ratios, preservation of extant host nigrostriatal circuitry, and a normalizing effect on α-synuclein aggregation. We propose that multiple modes of reciprocal interaction between exogenous hNSCs and the pathological host milieu underlie the functional improvement observed in this model of PD.


Annals of the New York Academy of Sciences | 2005

The Miniature Pig as an Animal Model in Biomedical Research

Petr Vodicka; Karel Smetana; Barbora Dvořánková; Teresa Emerick; Yingzhi Z. Xu; Jitka Ourednik; Vaclav Ourednik; Jan Motlik

Abstract: Crucial prerequisites for the development of safe preclinical protocols in biomedical research are suitable animal models that would allow for human‐related validation of valuable research information gathered from experimentation with lower mammals. In this sense, the miniature pig, sharing many physiological similarities with humans, offers several breeding and handling advantages (when compared to non‐human primates), making it an optimal species for preclinical experimentation. The present review offers several examples taken from current research in the hope of convincing the reader that the porcine animal model has gained massively in importance in biomedical research during the last few years. The adduced examples are taken from the following fields of investigation: (a) the physiology of reproduction, where pig oocytes are being used to study chromosomal abnormalities (aneuploidy) in the adult human oocyte; (b) the generation of suitable organs for xenotransplantation using transgene expression in pig tissues; (c) the skin physiology and the treatment of skin defects using cell therapy‐based approaches that take advantage of similarities between pig and human epidermis; and (d) neurotransplantation using porcine neural stem cells grafted into inbred miniature pigs as an alternative model to non‐human primates xenografted with human cells.


Gene Therapy | 2002

Global gene and cell replacement strategies via stem cells

Kook In Park; Jitka Ourednik; Vaclav Ourednik; Rosanne M. Taylor; Karen S. Aboody; Kurtis I. Auguste; Mahesh Lachyankar; D. E. Redmond; Evan Y. Snyder

The inherent biology of neural stem cells (NSCs) endows them with capabilities that not only circumvent many of the limitations of other gene transfer vehicles, but that enable a variety of novel therapeutic strategies heretofore regarded as beyond the purview of neural transplantation. Most neurodegenerative diseases are characterized not by discrete, focal abnormalities but rather by extensive, multifocal, or even global neuropathology. Such widely disseminated lesions have not conventionally been regarded as amenable to neural transplantation. However, the ability of NSCs to engraft diffusely and become integral members of structures throughout the host CNS, while also expressing therapeutic molecules, may permit these cells to address that challenge. Intriguingly, while NSCs can be readily engineered to express specified foreign genes, other intrinsic factors appear to emanate spontaneously from NSCs and, in the context of reciprocal donor–host signaling, seem to be capable of neuroprotective and/or neuroregenerative functions. Stem cells additionally have the appealing ability to ‘home in’ on pathology, even over great distances. Such observations help to advance the idea that NSCs – as a prototype for stem cells from other solid organs – might aid in reconstructing the molecular and cellular milieu of maldeveloped or damaged organs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host

Johan Jäderstad; Linda Maria Jäderstad; Jianxue Li; Satyan Chintawar; Carmen Saltó; Massimo Pandolfo; Vaclav Ourednik; Yang D. Teng; Richard L. Sidman; Ernest Arenas; Evan Y. Snyder; Eric Herlenius

How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.


Stem Cells | 2008

Neural Stem/Progenitor Cells Initiate the Formation of Cellular Networks That Provide Neuroprotection by Growth Factor-Modulated Antioxidant Expression

Lalitha Madhavan; Vaclav Ourednik; Jitka Ourednik

Recent studies indicate that transplanted neural stem/progenitor cells (NSPs) can interact with the environment of the central nervous system and stimulate protection and regeneration of host cells exposed to oxidative stress. Here, a set of animals grafted with NSPs and treated with 3‐nitropropionic acid (3‐NP) exhibited reduced behavioral symptoms and less severe damage of striatal cytoarchitecture than sham transplanted controls including better survival of neurons. Sites of tissue sparing correlated with the distribution pattern of donor cells in the host brain. To investigate the cellular and molecular bases of this phenomenon, we treated cocultures of NSPs and primary neural cell cultures with 3‐NP to induce oxidative stress and to study NSP‐dependent activation of antioxidant mechanisms and cell survival. Proactive presence of NSPs significantly improved cell viability by interfering with production of free radicals and increasing the expression of neuroprotective factors. This process was accompanied by elevated expression of ciliary neurotrophic factor (CNTF) and vascular endothelial growth factor (VEGF) in a network of NSPs and local astrocytes. Intriguingly, both in vitro and in vivo, enhanced growth factor secretion stimulated a robust upregulation of the antioxidant enzyme superoxide dismutase 2 (SOD2) in neurons and resulted in their improved survival. Our findings thus reveal a so far unrecognized mechanism of interaction between NSPs and surrounding cells accompanying neuroprotection: through mutual, NSP‐triggered stimulation of growth factor production and activation of antioxidant mechanisms, cellular networks may shield the local environment from the arriving impact of oxidative stress.


Clinical Genetics | 1999

Neural stem cells -- a versatile tool for cell replacement and gene therapy in the central nervous system.

Vaclav Ourednik; Jitka Ourednik; Ki Il Park; Ey Snyder

In recent years, it has become evident that the developing and even the adult mammalian central nervous system contains a population of undifferentiated, multipotent cell precursors, neural stem cells, the plastic properties of which might be of advantage for the design of more effective therapies for many neurological diseases. This article reviews the recent progress in establishing rodent and human clonal neural stem cell lines, their biological properties, and how these cells can be utilized to a correct variety of defects, with prospects for the near future to harness their behaviour for neural stem cell‐based treatment of diseases in humans.


Stem Cells | 2006

Increased “Vigilance” of Antioxidant Mechanisms in Neural Stem Cells Potentiates Their Capability to Resist Oxidative Stress

Lalitha Madhavan; Vaclav Ourednik; Jitka Ourednik

Although the potential value of transplanted and endogenous neural stem cells (NSCs) for the treatment of the impaired central nervous system (CNS) has widely been accepted, almost nothing is known about their sensitivity to the hostile microenvironment in comparison to surrounding, more mature cell populations. Since many neuropathological insults are accompanied by oxidative stress, this report compared the alertness of antioxidant defense mechanisms and cell survival in NSCs and postmitotic neural cells (PNCs). Both primary and immortalized cells were analyzed. At steady state, NSCs distinguished themselves in their basal mitochondrial metabolism from PNCs by their lower reactive oxygen species (ROS) levels and higher expression of the key antioxidant enzymes uncoupling protein 2 (UCP2) and glutathione peroxidase (GPx). Following exposure to the mitochondrial toxin 3‐nitropropionic acid, PNC cultures were marked by rapidly decreasing mitochondrial activity and increasing ROS content, both entailing complete cell loss. NSCs, in contrast, reacted by fast upregulation of UCP2, GPx, and superoxide dismutase 2 and successfully recovered from an initial deterioration. This recovery could be abolished by specific antioxidant inhibition. Similar differences between NSCs and PNCs regarding redox control efficiency were detected in both primary and immortalized cells. Our first in vivo data from the subventricular stem cell niche of the adult mouse forebrain corroborated the above observations and revealed strong baseline expression of UCP2 and GPx in the resident, proliferating NSCs. Thus, an increased “vigilance” of antioxidant mechanisms might represent an innate characteristic of NSCs, which not only defines their cell fate, but also helps them to encounter oxidative stress in diseased CNS.


Stem Cells | 2009

Cross-Talk Between Stem Cells and the Dysfunctional Brain is Facilitated by Manipulating the Niche: Evidence from an Adhesion Molecule

Vaclav Ourednik; Jitka Ourednik; Yifang Xu; Ying Zhang; William P. Lynch; Evan Y. Snyder; Melitta Schachner

In the injured brain, the behavior of neural stem/progenitor cells (NSCs) is regulated by multiple converging factors encountered in the niche, which is composed of several neural and non‐neural cell types. Signals emanating from the host influence the migration, survival, distribution, and fate of transplanted NSCs, which in turn can create host microenvironments that favor a return to homeostasis. We tested the hypothesis that overexpression of key facilitatory molecules that define the injury niche might enhance this bidirectional stem cell–host interaction to therapeutic advantage. As proof of concept, we investigated whether conditioning the niche with the neural cell adhesion molecule L1 might enhance recovery in a prototypical neurodegenerative milieu—the MPTP‐induced model of Parkinsons disease in aged mice—where cross‐talk between NSCs and imperiled host dopaminergic neurons is known to be pivotal in rescuing the function and connectivity of the latter. In lesioned mice (and in unlesioned controls), we overexpressed L1 in the NSCs to be transplanted into the ventral mesencephalon. Several pairwise experimental combinations were tested based on variations of engrafting L1 overexpressing versus nonoverexpressing NSCs into wild‐type (WT) versus L1‐overexpressing transgenic mice (specifically L1 transcribed from the GFAP promoter and, hence, overexpressed in host astrocytes). Enrichment for L1—particularly when expressed simultaneously in both donor NSCs and host brain—led to rapid and extensive distribution of exogenous NSCs, which in turn rescued (with an efficacy greater than in nonengineered controls) dysfunctional host dopaminergic nigral neurons, even when grafting was delayed by a month. L1 overexpression by NSCs also enhanced their own differentiation into tyrosine hydroxylase–expressing neurons in both WT and transgenic hosts. Graft–host interactions were thus favored by progressively increasing levels of L1. More broadly, this study supports the view that manipulating components of the niche (such as an adhesion molecule) that facilitate cross‐talk between stem cells and the dysfunctional brain may offer new strategies for more efficacious neurotransplantation, particularly when treatment is delayed as in chronic lesions or advanced stages of a neurodegenerative disease. STEM CELLS 2009;27:2846–2856


Cell Transplantation | 2004

Graft-induced plasticity in the mammalian host CNS.

Jitka Ourednik; Vaclav Ourednik

In this review we trace back the history of an idea that takes a new approach in restorative neurotransplantation by focusing on the “multifaceted dialogue” between graft and host and assigns a central role to graft-evoked host plasticity. In several experimental examples ranging from the transfer of solid fetal tissue grafts into mechanical cortical injuries to deposits of neural stem cells into hemisectioned spinal cord, MPTP-damaged substantia nigra or mutant cerebella supportive evidence is provided for the hypothesis, that in many CNS disorders regeneration of the host CNS can be achieved by taking advantage of the inherent capacity of neural grafts to induce protective and restorative mechanisms within the host. This principle might once allow us to spare even complex circuitry from neurodegeneration.


Experimental Neurology | 2002

Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus

Piotr Zlomanczuk; Maciej Mrugala; Horacio O. de la Iglesia; Vaclav Ourednik; Peter J. Quesenberry; Evan Y. Snyder; William J. Schwartz

Multipotent neural stem-like cells (NSCs) obtained from one brain region and transplanted to another region appear to differentiate into neuronal and glial phenotypes indigenous to the implantation site. Whether these donor-derived cells are appropriately integrated remains unanswered. In order to test this possibility, we exploited the suprachiasmatic nucleus (SCN) of the hypothalamus, site of a known circadian clock, as a novel engraftment target. When a clone of NSCs initially derived from neonatal mouse cerebellum was transplanted into mouse embryos, the cells incorporated within the SCN over a narrow gestational window that corresponded to the conclusion of SCN neurogenesis. Immunocytochemical staining suggested that donor-derived cells in the SCN synthesized a peptide neurotransmitter (arginine vasopressin) characteristic of SCN neurons. Donor-derived SCN cells reacted to light pulses by expressing immunoreactive c-Fos protein in a pattern that is appropriate for native SCN cells. This region-specific and physiologically appropriate response to the natural stimulation of a remote sensory input implies that donor-derived and endogenous cells formed true SCN chimeras, suggesting that exogenous NSCs engrafted to ectopic locations can integrate in a meaningful fashion.

Collaboration


Dive into the Vaclav Ourednik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang D. Teng

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Pyo Lee

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curt R. Freed

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge