Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim M. Govorun is active.

Publication


Featured researches published by Vadim M. Govorun.


Nature Communications | 2013

Human gut microbiota community structures in urban and rural populations in Russia

Alexander V. Tyakht; Elena S. Kostryukova; Anna Popenko; Maxim S. Belenikin; Alexander V. Pavlenko; Andrey K. Larin; Irina Y. Karpova; Oksana V. Selezneva; Tatyana Semashko; Elena A. Ospanova; Vladislav V. Babenko; Igor Maev; Sergey V. Cheremushkin; Yuriy A. Kucheryavyy; Petr L. Shcherbakov; Vladimir B. Grinevich; Oleg I. Efimov; Evgenii I. Sas; Rustam Abdulkhakov; Sayar Abdulkhakov; Elena A. Lyalyukova; Maria Livzan; Valentin V. Vlassov; Renad Z. Sagdeev; Vladislav V. Tsukanov; Marina Osipenko; Irina V. Kozlova; Alexander V. Tkachev; Valery I. Sergienko; Dmitry G. Alexeev

The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status.


The Journal of Molecular Diagnostics | 2009

Direct Bacterial Profiling by Matrix-Assisted Laser Desorption−Ionization Time-of-Flight Mass Spectrometry for Identification of Pathogenic Neisseria

Elena N. Ilina; Alexandra D. Borovskaya; Maja M. Malakhova; Vladimir A. Vereshchagin; Anna Kubanova; Alexander N. Kruglov; Tatyana S. Svistunova; Anaida O. Gazarian; Thomas Maier; Markus Kostrzewa; Vadim M. Govorun

The present study investigates the suitability of direct bacterial profiling as a tool for the identification and subtyping of pathogenic Neisseria. The genus Neisseria includes two human pathogens, Neisseria meningitidis and Neisseria gonorrhoeae, as well as several nonpathogenic Neisseria species. Here, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling protocol was optimized using a laboratory strain of E. coli DH5alpha to guarantee high quality and reproducible results. Subsequently, mass spectra for both laboratory and clinical strains of N. gonorrhoeae, N. meningitidis, and several nonpathogenic Neisseria species were collected. Significant interspecies differences but little intraspecies diversity were revealed by means of a visual inspection and bioinformatics examination using the MALDI BioTyper software. Cluster analysis successfully separated mass spectra collected from three groups that corresponded to N. gonorrhoeae, N. meningitidis, and nonpathogenic Neisseria isolates. Requiring only one bacterial colony for testing and using a fast and easy measuring protocol, this approach represents a powerful tool for the rapid identification of pathogenic Neisseria and can be adopted for other microorganisms.


Scientific Reports | 2015

Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol.

Mikhail A. Livshits; Elena Khomyakova; Evgeniy G. Evtushenko; Vassili N. Lazarev; Nikolay A. Kulemin; Svetlana E. Semina; Edward V. Generozov; Vadim M. Govorun

Exosomes, small (40–100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for “fixed-angle” rotors. For both types of rotors – “swinging bucket” and “fixed-angle” – we express the theoretically expected proportion of pelleted vesicles of a given size and the “cut-off” size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the “cut-off” sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this “cut-off”-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.


Epigenetics | 2013

Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips.

Vladimir A Naumov; Edward V. Generozov; Natalya B Zaharjevskaya; Darya S Matushkina; Andrey K. Larin; Stanislav V Chernyshov; Mikhail V Alekseev; Yuri Shelygin; Vadim M. Govorun

Illumina’s Infinium HumanMethylation450 BeadChip arrays were used to examine genome-wide DNA methylation profiles in 22 sample pairs from colorectal cancer (CRC) and adjacent tissues and 19 colon tissue samples from cancer-free donors. We show that the methylation profiles of tumors and healthy tissue samples can be clearly distinguished from one another and that the main source of methylation variability is associated with disease status. We used different statistical approaches to evaluate the methylation data. In general, at the CpG-site level, we found that common CRC-specific methylation patterns consist of at least 15,667 CpG sites that were significantly different from either adjacent healthy tissue or tissue from cancer-free subjects. Of these sites, 10,342 were hypermethylated in CRC, and 5,325 were hypomethylated. Hypermethylated sites were common in the maximum number of sample pairs and were mostly located in CpG islands, where they were significantly enriched for differentially methylated regions known to be cancer-specific. In contrast, hypomethylated sites were mostly located in CpG shores and were generally sample-specific. Despite the considerable variability in methylation data, we selected a panel of 14 highly robust candidates showing methylation marks in genes SND1, ADHFE1, OPLAH, TLX2, C1orf70, ZFP64, NR5A2, and COL4A. This set was successfully cross-validated using methylation data from 209 CRC samples and 38 healthy tissue samples from The Cancer Genome Atlas consortium (AUC = 0.981 [95% CI: 0.9677–0.9939], sensitivity = 100% and specificity = 82%). In summary, this study reports a large number of loci with novel differential methylation statuses, some of which may serve as candidate markers for diagnostic purposes.


Biochemistry | 2003

Comparative Analysis of Proteome Maps of Helicobacter pylori Clinical Isolates

Vadim M. Govorun; Sergei A. Moshkovskii; Olga V. Tikhonova; E. I. Goufman; Marina V. Serebryakova; K. T. Momynaliev; Petr G. Lokhov; E. V. Khryapova; L. V. Kudryavtseva; O. V. Smirnova; I. Yu. Toropyguine; B. I. Maksimov; Alexander I. Archakov

The gram-negative bacterium Helicobacter pylori is found in human gastric mucosa. A widely distributed H. pylori infection is associated with chronic gastritis, gastric and duodenal ulcers, and malignant neoplasms. In this study proteome maps of four H. pylori clinical isolates derived from patients of two Russian regions (Moscow/Moscow Region and Novosibirsk) were obtained using 2D-electrophoresis and MALDI-TOF-mass-spectrometry. Variability of some H. pylori proteins and the level of their expression have been evaluated. These four isolates could be easily subdivided into two equal groups characterized by the close proteome profiles and the isolate from Moscow Region and the isolate from Novosibirsk constituted one group. The present study demonstrates the potential of proteome technology, which can be employed together with genome and transcriptome studies for the multiparameter typing of clinical isolates of pathogenic microorganisms.


Rapid Communications in Mass Spectrometry | 2010

Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori.

Elena N. Ilina; Alexandra D. Borovskaya; Marina V. Serebryakova; Vera V. Chelysheva; Kuvat Momynaliev; Thomas Maier; Markus Kostrzewa; Vadim M. Govorun

The characteristics of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based investigation of extremely variable bacteria such as Helicobacter pylori were studied. H. pylori possesses a very high natural variability. Accurate tools for species identification and epidemiological characterization could help the scientific community to better understand the transmission pathways and virulence mechanisms of these bacteria. Seventeen clinical as well as two laboratory strains of H. pylori were analyzed by the MALDI Biotyper method for rapid species identification. Mass spectra collected were found containing 7-13 significant peaks per sample, and only six protein signals were identical for more than half of the strains. Four of them could be assigned to ribosomal proteins RL32, RL33, RL34, and RL36. The reproducible peak with m/z 6948 was identified as a histidine-rich metal-binding polypeptide by tandem mass spectrometry (MS/MS). In spite of the evident protein heterogeneity of H. pylori the mass spectra collected for a particular strain under several cultivations were highly reproducible. Moreover, all clinical strains were perfectly identified as H. pylori species through comparative analysis using the MALDI Biotyper software (Bruker Daltonics, Germany) by pattern matching against a database containing mass spectra from different microbial strains (n = 3287) including H. pylori 26695 and J99. The results of this study allow the conclusion that the MALDI-TOF direct bacterial profiling is suited for H. pylori identification and could be supported by mass spectra fragmentation of the observed polypeptide if necessary.


Nature Communications | 2014

Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge

Oleg Gusev; Yoshitaka Suetsugu; Richard Cornette; Takeshi Kawashima; Maria D. Logacheva; Alexey S. Kondrashov; Aleksey A. Penin; Rie Hatanaka; Shingo Kikuta; Sachiko Shimura; Hiroyuki Kanamori; Yuichi Katayose; Takashi Matsumoto; Elena I. Shagimardanova; Dmitry G. Alexeev; Vadim M. Govorun; Jennifer H. Wisecaver; Alexander S. Mikheyev; Ryo Koyanagi; Manabu Fujie; Tomoaki Nishiyama; Shuji Shigenobu; Tomoko F. Shibata; Veronika Golygina; Mitsuyasu Hasebe; Takashi Okuda; Nori Satoh; Takahiro Kikawada

Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki.


Biochemistry | 2002

Proteomic Technologies in Modern Biomedical Science

Vadim M. Govorun; Alexander I. Archakov

This review highlights modern technologies employed in proteomics. Methods of sample preparations are discussed with special emphasis on the requirements for preparation of biological material, which may seriously influence the results of proteomic studies. Methods of solubilization, electrophoresis, chromatographic protein separation, and visualization of protein spots in gels are described. Modern methods of mass spectrometry used in proteomic studies include combination of protein chips with mass spectrometry. The review also describes approaches of functional proteomics, i.e., interactomics, and also bioinformatic resources used in proteomics for image analysis of 2D-gel-electrophoresis and for identification of protein sequences by mass spectra.


Journal of Bacteriology | 2011

Complete Genome and Proteome of Acholeplasma laidlawii

Vassili N. Lazarev; S. A. Levitskii; Yu. I. Basovskii; M. M. Chukin; Tatyana Akopian; V. V. Vereshchagin; Elena S. Kostrjukova; Galina Yu Kovaleva; Marat D. Kazanov; Dmitry B. Malko; Alexey G. Vitreschak; Natalia V. Sernova; Mikhail S. Gelfand; Irina A. Demina; Marina V. Serebryakova; Maria A. Galyamina; N. N. Vtyurin; S. I. Rogov; Dmitry G. Alexeev; V. G. Ladygina; Vadim M. Govorun

We present the complete genome sequence and proteogenomic map for Acholeplasma laidlawii PG-8A (class Mollicutes, order Acholeplasmatales, family Acholeplasmataceae). The genome of A. laidlawii is represented by a single 1,496,992-bp circular chromosome with an average G+C content of 31 mol%. This is the longest genome among the Mollicutes with a known nucleotide sequence. It contains genes of polymerase type I, SOS response, and signal transduction systems, as well as RNA regulatory elements, riboswitches, and T boxes. This demonstrates a significant capability for the regulation of gene expression and mutagenic response to stress. Acholeplasma laidlawii and phytoplasmas are the only Mollicutes known to use the universal genetic code, in which UGA is a stop codon. Within the Mollicutes group, only the sterol-nonrequiring Acholeplasma has the capacity to synthesize saturated fatty acids de novo. Proteomic data were used in the primary annotation of the genome, validating expression of many predicted proteins. We also detected posttranslational modifications of A. laidlawii proteins: phosphorylation and acylation. Seventy-four candidate phosphorylated proteins were found: 16 candidates are proteins unique to A. laidlawii, and 11 of them are surface-anchored or integral membrane proteins, which implies the presence of active signaling pathways. Among 20 acylated proteins, 14 contained palmitic chains, and six contained stearic chains. No residue of linoleic or oleic acid was observed. Acylated proteins were components of mainly sugar and inorganic ion transport systems and were surface-anchored proteins with unknown functions.


Infection, Genetics and Evolution | 2012

Mass spectrometry based methods for the discrimination and typing of mycobacteria

Egor A. Shitikov; Elena N. Ilina; Larisa N. Chernousova; A. Borovskaya; I. Rukin; M. Afanas’ev; T. G. Smirnova; A. Vorobyeva; Elena E. Larionova; S. Andreevskaya; M. Kostrzewa; Vadim M. Govorun

Identification and typing of mycobacteria is very important for epidemiology, susceptibility testing and diagnostic purposes. This paper describes the development and validation of the alternative methods for species identification and typing of mycobacteria based on a matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-ToF MS). Altogether there were 383 clinical isolates analyzed which include 348 strains of Mycobacterium tuberculosis complex (MTBC) (342 strains of M. tuberculosis and 6 strains of M. bovis) and 35 strains of nontuberculous mycobacteria (NTM) represented by 16 different species. Direct bacterial profiling (DBP) by means of MALDI-ToF MS was carried out. Cluster analysis of DBP mass spectra divided them into two large separate groups corresponding to MTBC and NTM, and also demonstrated the possibility of isolate identification at the species level. Spoligotyping protocol based on mass spectrometry was developed and validated, it matched completely to classical spoligotyping data. Our results suggest that MALDI-ToF MS has potential as a rapid and reproducible platform for the identification and typing of Mycobacterium species.

Collaboration


Dive into the Vadim M. Govorun's collaboration.

Top Co-Authors

Avatar

Dmitry G. Alexeev

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

Elena S. Kostryukova

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassili N. Lazarev

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

Vadim T. Ivanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Georgij P. Arapidi

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dmitry Ischenko

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

Ilya Altukhov

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander V. Pavlenko

Moscow Institute of Physics and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge