Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey I. Kovalchuk is active.

Publication


Featured researches published by Sergey I. Kovalchuk.


Molecular & Cellular Proteomics | 2014

Proteome–Metabolome Profiling of Ovarian Cancer Ascites Reveals Novel Components Involved in Intercellular Communication

Victoria O. Shender; Marat S. Pavlyukov; Rustam H. Ziganshin; Georgij P. Arapidi; Sergey I. Kovalchuk; Nikolay A. Anikanov; Ilya Altukhov; Dmitry G. Alexeev; Ivan Butenko; Alexey L. Shavarda; Elena Khomyakova; Evgeniy G. Evtushenko; Lev A. Ashrafyan; Irina B. Antonova; Igor N. Kuznetcov; Alexey Y. Gorbachev; Mikhail I. Shakhparonov; Vadim M. Govorun

Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell–cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication.


BMC Genomics | 2013

DNA repair in Mycoplasma gallisepticum.

Alexey Y. Gorbachev; Gleb Y. Fisunov; Mark Izraelson; Darya V Evsyutina; Pavel V. Mazin; Dmitry G. Alexeev; Olga Pobeguts; Tatyana N Gorshkova; Sergey I. Kovalchuk; Dmitry E Kamashev; Vadim M. Govorun

BackgroundDNA repair is essential for the maintenance of genome stability in all living beings. Genome size as well as the repertoire and abundance of DNA repair components may vary among prokaryotic species. The bacteria of the Mollicutes class feature a small genome size, absence of a cell wall, and a parasitic lifestyle. A small number of genes make Mollicutes a good model for a “minimal cell” concept.ResultsIn this work we studied the DNA repair system of Mycoplasma gallisepticum on genomic, transcriptional, and proteomic levels. We detected 18 out of 22 members of the DNA repair system on a protein level. We found that abundance of the respective mRNAs is less than one per cell. We studied transcriptional response of DNA repair genes of M. gallisepticum at stress conditions including heat, osmotic, peroxide stresses, tetracycline and ciprofloxacin treatment, stationary phase and heat stress in stationary phase.ConclusionsBased on comparative genomic study, we determined that the DNA repair system M. gallisepticum includes a sufficient set of proteins to provide a cell with functional nucleotide and base excision repair and mismatch repair. We identified SOS-response in M. gallisepticum on ciprofloxacin, which is a known SOS-inducer, tetracycline and heat stress in the absence of established regulators. Heat stress was found to be the strongest SOS-inducer. We found that upon transition to stationary phase of culture growth transcription of DNA repair genes decreases dramatically. Heat stress does not induce SOS-response in a stationary phase.


The FASEB Journal | 2015

Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity

A. A. Belogurov; Ekaterina Kuzina; Anna Kudriaeva; Alexey Kononikhin; Sergey I. Kovalchuk; Yelena Surina; Ivan Smirnov; Yakov Lomakin; Anna Bacheva; Alexey Stepanov; Yaroslava D. Karpova; Yulia V. Lyupina; Oleg N. Kharybin; Dobroslav Melamed; Natalia A. Ponomarenko; Natalia Sharova; Eugene Nikolaev; A. G. Gabibov

Recent findings indicate that the ubiquitin‐proteasome system is involved in the pathogenesis of cancer as well as autoimmune and several neurodegenerative diseases, and is thus a target for novel therapeutics. One disease that is related to aberrant protein degradation is multiple sclerosis, an autoimmune disorder involving the processing and presentation of myelin autoantigens that leads to the destruction of axons. Here, we show that brain‐derived proteasomes from SJL mice with experimental autoimmune encephalomyelitis (EAE) in an ubiquitin‐independent manner generate significantly increased amounts of myelin basic protein peptides that induces cytotoxic lymphocytes to target mature oligodendrocytes ex vivo. Ten times enhanced release of immunogenic peptides by cerebral proteasomes from EAE‐SJL mice is caused by a dramatic shift in the balance between constitutive and β1ihigh immunoproteasomes in the CNS of SJL mice with EAE. We found that during EAE, β1i is increased in resident CNS cells, whereas β5i is imported by infiltrating lymphocytes through the blood‐brain barrier. Peptidyl epoxyketone specifically inhibits brain‐derived β1ihigh immunoproteasomes in vitro (kobs/[I] = 240 M‐1s‐1), and at a dose of 0.5 mg/kg, it ameliorates ongoing EAE in vivo. Therefore, our findings provide novel insights into myelin metabolism in pathophysiologic conditions and reveal that the β1i subunit of the immunoproteasome is a potential target to treat autoimmune neurologic diseases.—Belogurov Jr., A., Kuzina, E., Kudriaeva, A., Kononikhin, A., Kovalchuk, S., Surina, Y., Smirnov, I., Lomakin, Y., Bacheva, A., Stepanov, A., Karpova, Y., Lyupina, Y., Kharybin, O., Melamed, D., Ponomarenko, N., Sharova, N., Nikolaev, E., Gabibov, A. Ubiquitin‐independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity. FASEB J. 29, 1901‐1913 (2015). www.fasebj.org


FEBS Letters | 2005

Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A

Yuri N. Antonenko; Tatyana B. Stoilova; Sergey I. Kovalchuk; Natalya S. Egorova; Alina A. Pashkovskaya; Alexander A. Sobko; Elena A. Kotova; Sergey V. Sychev; Andrey Y. Surovoy

Ion‐channel activity of a series of gramicidin A analogues carrying charged amino‐acid sequences on the C‐terminus of the peptide was studied on planar bilayer lipid membranes and liposomes. It was found that the analogue with the positively charged sequence GSGRRRRSQS forms classical cationic pores at low concentrations and large unselective pores at high concentrations. The peptide was predominantly in the right‐handed β6.3‐helical conformation in liposomes as shown by circular dichroism spectroscopy. The single‐channel conductance of the large pore was estimated to be 320 pS in 100 mM choline chloride as judged from the fluctuation analysis of the multi‐channel current. The analogue with the negatively charged sequence GSGEEEESQS exhibited solely classical cationic channel activity. The ability of a peptide to form different type of channels can be used in the search for broad‐spectrum antibiotics.


BMC Plant Biology | 2015

Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens.

Igor Fesenko; Georgij P. Arapidi; Alexander Yu Skripnikov; Dmitry G. Alexeev; Elena S. Kostryukova; Alexander I. Manolov; Ilya Altukhov; Regina Khazigaleeva; Anna Seredina; Sergey I. Kovalchuk; Rustam H. Ziganshin; Viktor Zgoda; Svetlana E. Novikova; Tatiana A. Semashko; Darya K Slizhikova; Vasilij V Ptushenko; Alexey Y. Gorbachev; Vadim M. Govorun; Vadim T. Ivanov

BackgroundProtein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process.ResultsWe thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation “burst”, with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity.ConclusionWe suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide “burst” is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.


Biochimica et Biophysica Acta | 2014

Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria

D. N. Silachev; Ljudmila S. Khailova; V. A. Babenko; M. V. Gulyaev; Sergey I. Kovalchuk; Ljubava D. Zorova; Egor Y. Plotnikov; Yuri N. Antonenko; Dmitry B. Zorov

BACKGROUND Reactive oxygen species are grossly produced in the brain after cerebral ischemia and reperfusion causing neuronal cell death. Mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150mV. Therefore, limited uncoupling of oxidative phosphorylation could be beneficial for cells exposed to deleterious oxidative stress-associated conditions by preventing excessive generation of reactive oxygen species. METHODS Protonophoric and uncoupling activities of different peptides were measured using pyranine-loaded liposomes and isolated mitochondria. To evaluate the effect of glutamate-substituted analog of gramicidin A ([Glu1]gA) administration on the brain ischemic damage, we employed the in vitro model of neuronal hypoxia using primary neuronal cell cultures and the in vivo model of cerebral ischemia induced in rats by the middle cerebral artery occlusion. RESULTS [Glu1]gA was the most effective in proton-transferring activity among several N-terminally substituted analogs of gramicidin A tested in liposomes and rat brain and liver mitochondria. The peptides were found to be protective against ischemia-induced neuronal cell death and they lowered mitochondrial membrane potential in cultured neurons and diminished reactive oxygen species production in isolated brain mitochondria. The intranasal administration of [Glu1]gA remarkably diminished the infarct size indicated in MR-images of a brain at day 1 after the middle cerebral artery occlusion. In [Glu1]gA-treated rats, the ischemia-induced brain swelling and behavioral dysfunction were significantly suppressed. CONCLUSIONS The glutamate-substituted analogs of gramicidin A displaying protonophoric and uncoupling activities protect neural cells and the brain from the injury caused by ischemia/reperfusion. GENERAL SIGNIFICANCE [Glu1]gA may be potentially used as a therapeutic agent to prevent neuron damage after stroke.


Molecular & Cellular Proteomics | 2016

The Pathogenesis of the Demyelinating Form of Guillain-Barre Syndrome (GBS): Proteo-peptidomic and Immunological Profiling of Physiological Fluids

Rustam H. Ziganshin; Olga M. Ivanova; Yakov Lomakin; A. A. Belogurov; Sergey I. Kovalchuk; I. V. Azarkin; Georgij P. Arapidi; Nikolay A. Anikanov; Victoria O. Shender; Mikhail A. Piradov; Natalia A. Suponeva; Anna A. Vorobyeva; A. G. Gabibov; Vadim T. Ivanov; Vadim M. Govorun

Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome—is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranviers nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.


Biochimica et Biophysica Acta | 2013

Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes

Alexandra I. Sorochkina; Sergey I. Kovalchuk; Elena O. Omarova; Alexander A. Sobko; Elena A. Kotova; Yuri N. Antonenko

Introducing a charged group near the N-terminus of gramicidin A (gA) is supposed to suppress its ability to form ion channels by restricting its head-to-head dimerization. The present study dealt with the activity of [Lys1]gA, [Lys3]gA, [Glu1]gA, [Glu3]gA, [Lys2]gA, and [Lys5]gA in model membrane systems (planar lipid bilayers and liposomes) and erythrocytes. In contrast to the Glu-substituted peptides, the lysine derivatives of gA caused non-specific liposomal leakage monitored by fluorescence dequenching of lipid vesicles loaded with carboxyfluorescein or other fluorescent dyes. Measurements of electrical current through a planar lipid membrane revealed formation of giant pores by Lys-substituted analogs, which depended on the presence of solvent in the bilayer lipid membrane. The efficacy of unselective pore formation in liposomes depended on the position of the lysine residue in the amino acid sequence, increasing in the row: [Lys2]gA<[Lys5]gA<[Lys1]gA<[Lys3]gA. The similar series of potency was exhibited by the Lys-substituted gA analogs in facilitating erythrocyte hemolysis, whereas the Glu-substituted analogs showed negligible hemolytic activity. Oligomerization of the Lys-substituted peptides is suggested to be involved in the process of nonselective pore formation.


Toxins | 2016

Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A2 are the Main Venom Components

Sergey I. Kovalchuk; Rustam H. Ziganshin; Vladislav G. Starkov; Victor I. Tsetlin; Yuri N. Utkin

Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A2, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the “kaznakovi” complex.


European Biophysics Journal | 2012

The pH-dependent induction of lipid membrane ionic permeability by N-terminally lysine-substituted analogs of gramicidin A

Tatyana I. Rokitskaya; Alexandra I. Sorochkina; Sergey I. Kovalchuk; Natalya S. Egorova; Elena A. Kotova; Sergey V. Sychev; Yuri N. Antonenko

Insertion of charged groups at the N-terminus of the gramicidin A (gA) amino acid sequence is considered to be fatal for peptide channel-forming activity because of hindrance to the head-to-head dimer formation. Here the induction of ionic conductivity in planar bilayer lipid membranes (BLM) was studied with gA analogs having lysine either in the first ([Lys1]gA) or the third ([Lys3]gA) position. If added to the bathing solution at neutral or acidic pH, these analogs, being protonated and thus positively charged, were unable to induce ionic current across BLM. By contrast, at pH 11 the induction of BLM conductivity was observed with both lysine-substituted analogs. Based on the dependence of the macroscopic current on the side of the peptide addition, sensitivity to calcium ions and susceptibility to sensitized photoinactivation, as well as on the single-channel properties of the analogs, we surmise that at alkaline pH [Lys1]gA formed channels with predominantly single-stranded structure of head-to-head helical dimers, whereas [Lys3]gA open channels had the double-stranded helical structure. CD spectra of the lysine-substituted analogs in liposomes were shown to be pH-dependent.

Collaboration


Dive into the Sergey I. Kovalchuk's collaboration.

Top Co-Authors

Avatar

Vadim M. Govorun

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim T. Ivanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgij P. Arapidi

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Natalya S. Egorova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Y. Surovoy

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge