Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim Y. Arshavsky is active.

Publication


Featured researches published by Vadim Y. Arshavsky.


Neuron | 2002

Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation.

Maxim Sokolov; Arkady Lyubarsky; Katherine J. Strissel; Andrey Savchenko; Viktor I. Govardovskii; Edward N. Pugh; Vadim Y. Arshavsky

We report a new cellular mechanism of rod photoreceptor adaptation in vivo, which is triggered by daylight levels of illumination. The mechanism involves a massive light-dependent translocation of the photoreceptor-specific G protein, transducin, between the functional compartments of rods. To characterize the mechanism, we developed a novel technique that combines serial tangential cryodissection of the rat retina with Western blot analysis of protein distribution in the sections. Up to 90% of transducin translocates from rod outer segments to other cellular compartments on the time scale of tens of minutes. The reduction in the transducin content of the rod outer segments is accompanied by a corresponding reduction in the amplification of the rod photoresponse, allowing rods to operate in illumination up to 10-fold higher than would otherwise be possible.


Nature | 1992

Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP.

Vadim Y. Arshavsky; M. Deric Bownds

THE photoreceptor G protein, transducin, is one of the class of heterotrimeric G proteins that mediates between membrane receptors and intracellular enzymes or ion channels. Light-activated rhodopsin catalyses the exchange of GDP for GTP on multiple transducin molecules. Activated transducin then stimulates cyclic GMP phosphodiesterase by releasing an inhibitory action of the phosphodiesterase γ-subunits. This leads to a decrease in cGMP levels in the rod, and closure of plasma membrane cationic channels gated by cGMP1–4. In this and other systems, turn-off of the response requires the GTP bound to G protein to be hydrolysed by an intrinsic GTPase activity5–7. Here we report that the interaction of transducin with cGMP phosphodiesterase, specifically with its γ-subunits, accelerates GTPase activity by several fold. Thus the γ-subunits of the phosphodiesterase serve a function analogous to the GTPase-activating proteins that regulate the class of small GTP-binding proteins. The acceleration can be partially suppressed by cGMP, most probably through the non-catalytic cGMP-binding sites of phosphodiesterase α and β-subunits. This cGMP regulation may function in light-adaptation of the photo-response as a negative feedback that decreases the lifetime of activated cGMP phosphodiesterase as light causes decreases in cytoplasmic cGMP.


Biophysical Journal | 1993

Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution.

Sergei I. Sukharev; Boris Martinac; Vadim Y. Arshavsky; Ching Kung

Mechanosensitive ion channels (MSCs) which could provide for fast osmoregulatory responses in bacteria, remain unidentified as molecular entities. MSCs from Escherichia coli (strain AW740) were examined using the patch-clamp technique, either (a) in giant spheroplasts, (b) after reconstitution by fusing native membrane vesicles with asolectin liposomes, or (c) by reassembly of octylglucoside-solubilized membrane extract into asolectin liposomes. MSC activities were similar in all three preparations, consisting of a large nonselective MSC of 3-nS conductance (in 200 mM KCl) that was activated by high negative pressures, and a small weakly anion-selective MSC of 1 nS activated by lower negative pressures. Both channels appeared more sensitive to suction in liposomes than in spheroplasts. After gel filtration of the solubilized membrane extract and reconstituting the fractions, both large MSC and small MSC activities were retrieved in liposomes. The positions of the peaks of channel activity in the column eluate, assayed by patch sampling of individual fractions reconstituted in liposomes, showed an apparent molecular mass under nondenaturing conditions of about 60-80 kDa for the large and 200-400 kDa for the small MSC. We conclude that (a) the large MSC and the small MSC are distinct molecular entities, (b) the fact that both MSCs were functional in liposomes following chromatography strongly suggests that these channels are gated by tension transduced via lipid bilayer, and (c) chromatographic fractionation of detergent-solubilized membrane proteins with subsequent patch sampling of reconstituted fractions can be used to identify and isolate these MS channel proteins.


Investigative Ophthalmology & Visual Science | 2004

In Vitro and In Vivo Characterization of Pigment Epithelial Cells Differentiated from Primate Embryonic Stem Cells

Koji M. Nishiguchi; Michael A. Sandberg; Aart Kooijman; Kirill A. Martemyanov; Jan Willem R. Pott; S.A. Hagstrom; Vadim Y. Arshavsky; Eliot L. Berson; Thaddeus P. Dryja

PURPOSE To determine whether primate embryonic stem (ES) cell-derived pigment epithelial cells (ESPEs) have the properties and functions of retinal pigment epithelial (RPE) cells in vitro and in vivo. METHODS Cynomolgus monkey ES cells were induced to differentiate into pigment epithelial cells by coculturing them with PA6 stromal cells in a differentiating medium. The expanded, single-layer ESPEs were examined by light and electron microscopy. The expression of standard RPE markers by the ESPEs was determined by RT-PCR, Western blot, and immunocytochemical analyses. The ESPEs were transplanted into the subretinal space of 4-week-old Royal College of Surgeons (RCS) rats, and the eyes were analyzed immunohistochemically at 8 weeks after grafting. The effect of the ESPE graft on the visual function of RCS rats was estimated by optokinetic reflex. RESULTS The expanded ESPEs were hexagonal and contained significant amounts of pigment. The ESPEs expressed typical RPE markers: ZO-1, RPE65, CRALBP, and Mertk. They had extensive microvilli and were able to phagocytose latex beads. When transplanted into the subretinal space of RCS rats, the grafted ESPEs enhanced the survival of the host photoreceptors. The effects of the transplanted ESPEs were confirmed by histologic analyses and behavioral tests. CONCLUSIONS The ESPEs had morphologic and physiological properties of normal RPE cells, and these findings suggest that these cells may provide an unlimited source of primate cells to be used for the study of pathogenesis, drug development, and cell-replacement therapy in eyes with retinal degenerative diseases due to primary RPE dysfunction.


Neuron | 2006

RGS expression rate-limits recovery of rod photoresponses.

Claudia M. Krispel; Desheng Chen; Nathan Melling; Yu Jiun Chen; Kirill A. Martemyanov; Nidia Quillinan; Vadim Y. Arshavsky; Theodore G. Wensel; Ching-Kang Chen; Marie E. Burns

Signaling through G protein-coupled receptors (GPCRs) underlies many cellular processes, yet it is not known which molecules determine the duration of signaling in intact cells. Two candidates are G protein-coupled receptor kinases (GRKs) and Regulators of G protein signaling (RGSs), deactivation enzymes for GPCRs and G proteins, respectively. Here we investigate whether GRK or RGS governs the overall rate of recovery of the light response in mammalian rod photoreceptors, a model system for studying GPCR signaling. We show that overexpression of rhodopsin kinase (GRK1) increases phosphorylation of the GPCR rhodopsin but has no effect on photoresponse recovery. In contrast, overexpression of the photoreceptor RGS complex (RGS9-1.Gbeta5L.R9AP) dramatically accelerates response recovery. Our results show that G protein deactivation is normally at least 2.5 times slower than rhodopsin deactivation, resolving a long-standing controversy concerning the mechanism underlying the recovery of rod visual transduction.


Neuron | 2005

Beyond Counting Photons: Trials and Trends in Vertebrate Visual Transduction

Marie E. Burns; Vadim Y. Arshavsky

For over 30 years, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and G protein signaling. Recently, photoreceptors have become an equally attractive model for studying many facets of neuronal cell biology. The primary goal of this review is to illustrate this rapidly growing trend. We will highlight the areas of active research in photoreceptor biology that reveal how different specialized compartments of the cell cooperate in fulfilling its overall function: converting photon absorption into changes in neurotransmitter release. The same trend brings us closer to understanding how defects in photoreceptor signaling can lead to cell death and retinal degeneration.


Neuron | 2000

The Gain of Rod Phototransduction: Reconciliation of Biochemical and Electrophysiological Measurements

Ilya Leskov; Vadim A. Klenchin; Jason W. Handy; Gary G. Whitlock; Viktor I. Govardovskii; M. Deric Bownds; Trevor D. Lamb; Edward N. Pugh; Vadim Y. Arshavsky

We have resolved a central and long-standing paradox in understanding the amplification of rod phototransduction by making direct measurements of the gains of the underlying enzymatic amplifiers. We find that under optimized conditions a single photoisomerized rhodopsin activates transducin molecules and phosphodiesterase (PDE) catalytic subunits at rates of 120-150/s, much lower than indirect estimates from light-scattering experiments. Further, we measure the Michaelis constant, Km, of the rod PDE activated by transducin to be 10 microM, at least 10-fold lower than published estimates. Thus, the gain of cGMP hydrolysis (determined by kcat/Km) is at least 10-fold higher than reported in the literature. Accordingly, our results now provide a quantitative account of the overall gain of the rod cascade in terms of directly measured factors.


Nature | 2004

Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation

Koji M. Nishiguchi; Michael A. Sandberg; Aart Kooijman; Kirill A. Martemyanov; Jan Willem R. Pott; Stephanie A. Hagstrom; Vadim Y. Arshavsky; Eliot L. Berson; Thaddeus P. Dryja

The RGS proteins are GTPase activating proteins that accelerate the deactivation of G proteins in a variety of signalling pathways in eukaryotes. RGS9 deactivates the G proteins (transducins) in the rod and cone phototransduction cascades. It is anchored to photoreceptor membranes by the transmembrane protein R9AP (RGS9 anchor protein), which enhances RGS9 activity up to 70-fold. If RGS9 is absent or unable to interact with R9AP, there is a substantial delay in the recovery from light responses in mice. We identified five unrelated patients with recessive mutations in the genes encoding either RGS9 or R9AP who reported difficulty adapting to sudden changes in luminance levels mediated by cones. Standard visual acuity was normal to moderately subnormal, but the ability to see moving objects, especially with low-contrast, was severely reduced despite full visual fields; we have termed this condition bradyopsia. To our knowledge, these patients represent the first identified humans with a phenotype associated with reduced RGS activity in any organ.


The Journal of Neuroscience | 2006

Arrestin Translocation Is Induced at a Critical Threshold of Visual Signaling and Is Superstoichiometric to Bleached Rhodopsin

Katherine J. Strissel; Maxim Sokolov; Lynn H. Trieu; Vadim Y. Arshavsky

Light induces massive translocation of major signaling proteins between the subcellular compartments of photoreceptors. Among them is visual arrestin responsible for quenching photoactivated rhodopsin, which moves into photoreceptor outer segments during illumination. Here, for the first time, we determined the light dependency of arrestin translocation, which revealed two key features of this phenomenon. First, arrestin translocation is triggered when the light intensity approaches a critical threshold corresponding to the upper limits of the normal range of rod responsiveness. Second, the amount of arrestin entering rod outer segments under these conditions is superstoichiometric to the amount of photoactivated rhodopsin, exceeding it by at least 30-fold. We further showed that it is not the absolute amount of excited rhodopsin but rather the extent of downstream cascade activity that triggers translocation. Finally, we demonstrated that the total amount of arrestin in the rod cell is nearly 10-fold higher than previously thought and therefore sufficient to inactivate the entire pool of rhodopsin at any level of illumination. Thus, arrestin movement to the outer segment leads to an increase in the free arrestin concentration and thereby may serve as a powerful mechanism of light adaptation.


Journal of Biological Chemistry | 2012

Photoreceptor Signaling: Supporting Vision across a Wide Range of Light Intensities

Vadim Y. Arshavsky; Marie E. Burns

For decades, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and biochemistry and for understanding many facets of neuronal cell biology. In recent years, new knowledge of the kinetics of signaling and the large-scale movements of proteins underlying signaling has led to a deeper appreciation of the photoreceptors unique challenge in mediating the first steps in vision over a wide range of light intensities.

Collaboration


Dive into the Vadim Y. Arshavsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie E. Burns

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge