Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vaibhav Srivastava is active.

Publication


Featured researches published by Vaibhav Srivastava.


PLOS ONE | 2009

Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate

Kiran Yanamandra; Oleg A. Alexeyev; Vladimir Zamotin; Vaibhav Srivastava; Andrei Shchukarev; Ann Christin Brorsson; Gian Gaetano Tartaglia; Thomas Vogl; Rakez Kayed; Gunnar Wingsle; Jan Olsson; Christopher M. Dobson; Anders Bergh; Fredrik Elgh; Ludmilla A. Morozova-Roche

Background The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimers disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon − prostate tissue remodelling in middle-aged and elderly men. Methodology/Principal Findings By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. Conclusions/Significance These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.


Journal of Proteome Research | 2009

Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen.

Max Bylesjö; Robert Nilsson; Vaibhav Srivastava; Andreas Grönlund; Annika I. Johansson; Steffan Jansson; Jan Karlsson; Thomas Moritz; Gunnar Wingsle; Johan Trygg

Tree biotechnology will soon reach a mature state where it will influence the overall supply of fiber, energy and wood products. We are now ready to make the transition from identifying candidate genes, controlling important biological processes, to discovering the detailed molecular function of these genes on a broader, more holistic, systems biology level. In this paper, a strategy is outlined for informative data generation and integrated modeling of systematic changes in transcript, protein and metabolite profiles measured from hybrid aspen samples. The aim is to study characteristics of common changes in relation to genotype-specific perturbations affecting the lignin biosynthesis and growth. We show that a considerable part of the systematic effects in the system can be tracked across all platforms and that the approach has a high potential value in functional characterization of candidate genes.


Journal of Biological Chemistry | 2012

Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis.

Jehad Shaikhali; Louise Norén; Juan de Dios Barajas-López; Vaibhav Srivastava; Janine König; Uwe H. Sauer; Gunnar Wingsle; Karl-Josef Dietz; Åsa Strand

Background: The G-box cis-element is enriched in promoters of genes responding to light and to high light. Results: DTT induces DNA binding activity of bZIP transcription factors by reducing a disulfide bond. Conclusion: Redox regulation is crucial for DNA binding of the G-group of Arabidopsis bZIP transcription factors. Significance: Redox-dependent mechanisms modulate the activity of plant bZIPs in response to environmental signals. Plant genes that contain the G-box in their promoters are responsive to a variety of environmental stimuli. Bioinformatics analysis of transcriptome data revealed that the G-box element is significantly enriched in promoters of high light-responsive genes. From nuclear extracts of high light-treated Arabidopsis plants, we identified the AtbZIP16 transcription factor as a component binding to the G-box-containing promoter fragment of light-harvesting chlorophyll a/b-binding protein2.4 (LHCB2.4). AtbZIP16 belongs to the G-group of Arabidopsis basic region leucine zipper (bZIP) type transcription factors. Although AtbZIP16 and its close homologues AtbZIP68 and AtGBF1 bind the G-box, they do not bind the mutated half-sites of the G-box palindrome. In addition, AtbZIP16 interacts with AtbZIP68 and AtGBF1 in the yeast two-hybrid system. A conserved Cys residue was shown to be necessary for redox regulation and enhancement of DNA binding activity in all three proteins. Furthermore, transgenic Arabidopsis lines overexpressing the wild type version of bZIP16 and T-DNA insertion mutants for bZIP68 and GBF1 demonstrated impaired regulation of LHCB2.4 expression. Finally, overexpression lines for the mutated Cys variant of bZIP16 provided support for the biological significance of Cys330 in redox regulation of gene expression. Thus, our results suggest that environmentally induced changes in the redox state regulate the activity of members of the G-group of bZIP transcription factors.


Journal of Neurochemistry | 2010

Superoxide dismutase-1 and other proteins in inclusions from transgenic amyotrophic lateral sclerosis model mice.

Daniel Bergemalm; Karin Forsberg; Vaibhav Srivastava; Karin S. Graffmo; Peter Andersen; Thomas Brännström; Gunnar Wingsle; Stefan L. Marklund

J. Neurochem. (2010) 114, 408–418.


BMC Genomics | 2013

OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants

Vaibhav Srivastava; Ogonna Obudulu; Joakim Bygdell; Tommy Löfstedt; Patrik Rydén; Robert Nilsson; Maria Ahnlund; Annika I. Johansson; Pär Jonsson; Eva Freyhult; Johanna Qvarnström; Jan Karlsson; Michael Melzer; Thomas Moritz; Johan Trygg; Torgeir R. Hvidsten; Gunnar Wingsle

BackgroundReactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams.ResultsThe main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways.ConclusionThe proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information.


The Plant Cell | 2012

The CRYPTOCHROME1-Dependent Response to Excess Light Is Mediated through the Transcriptional Activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis

Jehad Shaikhali; Juan de Dios Barajas-López; Krisztina Ötvös; Dmitry Kremnev; Ana Sánchez Garcia; Vaibhav Srivastava; Gunnar Wingsle; László Bakó; Åsa Strand

This work identifies ZML2 and its homolog ZML1 as key regulators of gene expression in the cry1-dependent response to excess light. ZML1/2 bind to the CryR1 cis-element in vitro and in vivo, and T-DNA insertion lines for ZML2 and ZML1 were sensitive to excess light, demonstrating misregulation of several cry1-dependent genes in response to excess light. Exposure of plants to light intensities that exceed the electron utilization capacity of the chloroplast has a dramatic impact on nuclear gene expression. The photoreceptor Cryptochrome 1 (cry1) is essential to the induction of genes encoding photoprotective components in Arabidopsis thaliana. Bioinformatic analysis of the cry1 regulon revealed the putative cis-element CryR1 (GnTCKAG), and here we demonstrate an interaction between CryR1 and the zinc finger GATA-type transcription factors ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 (ZML1) and ZML2. The ZML proteins specifically bind to the CryR1 cis-element as demonstrated in vitro and in vivo, and TCTAG was shown to constitute the core sequence required for ZML2 binding. In addition, ZML2 activated transcription of the yellow fluorescent protein reporter gene driven by the CryR1 cis-element in Arabidopsis leaf protoplasts. T-DNA insertion lines for ZML2 and its homolog ZML1 demonstrated misregulation of several cry1-dependent genes in response to excess light. Furthermore, the zml1 and zml2 T-DNA insertion lines displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II (PSII), indicated by reduced maximum quantum efficiency of PSII, and severe photobleaching. Thus, we identified the ZML2 and ZML1 GATA transcription factors as two essential components of the cry1-mediated photoprotective response.


Biochemical Journal | 2012

Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.

Benjamin Selles; Martín Hugo; Madia Trujillo; Vaibhav Srivastava; Gunnar Wingsle; Jean-Pierre Jacquot; Rafael Radi; Nicolas Rouhier

Gpxs (glutathione peroxidases) constitute a family of peroxidases, including selenocysteine- or cysteine-containing isoforms (SeCys-Gpx or Cys-Gpx), which are regenerated by glutathione or Trxs (thioredoxins) respectively. In the present paper we show new data concerning the substrates of poplar Gpx5 and the residues involved in its catalytic mechanism. The present study establishes the capacity of this Cys-Gpx to reduce peroxynitrite with a catalytic efficiency of 106 M-1·s-1. In PtGpx5 (poplar Gpx5; Pt is Populus trichocarpa), Glu79, which replaces the glutamine residue usually found in the Gpx catalytic tetrad, is likely to be involved in substrate selectivity. Although the redox midpoint potential of the Cys44-Cys92 disulfide bond and the pKa of Cys44 are not modified in the E79Q variant, it exhibited significantly improved kinetic parameters (Kperoxide and kcat) with tert-butyl hydroperoxide. The characterization of the monomeric Y151R variant demonstrated that PtGpx5 is not an obligate homodimer. Also, we show that the conserved Phe90 is important for Trx recognition and that Trx-mediated recycling of PtGpx5 occurs via the formation of a transient disulfide bond between the Trx catalytic cysteine residue and the Gpx5 resolving cysteine residue. Finally, we demonstrate that the conformational changes observed during the transition from the reduced to the oxidized form of PtGpx5 are primarily determined by the oxidation of the peroxidatic cysteine into sulfenic acid. Also, MS analysis of in-vitro-oxidized PtGpx5 demonstrated that the peroxidatic cysteine residue can be over-oxidized into sulfinic or sulfonic acids. This suggests that some isoforms could have dual functions potentially acting as hydrogen-peroxide- and peroxynitrite-scavenging systems and/or as mediators of peroxide signalling as proposed for 2-Cys peroxiredoxins.


Plant Physiology | 2009

Alternative Splicing Studies of the Reactive Oxygen Species Gene Network in Populus Reveal Two Isoforms of High-Isoelectric-Point Superoxide Dismutase

Vaibhav Srivastava; Manoj Kumar Srivastava; Kamel Chibani; Robert Nilsson; Nicolas Rouhier; Michael Melzer; Gunnar Wingsle

Recent evidence has shown that alternative splicing (AS) is widely involved in the regulation of gene expression, substantially extending the diversity of numerous proteins. In this study, a subset of expressed sequence tags representing members of the reactive oxygen species gene network was selected from the PopulusDB database to investigate AS mechanisms in Populus. Examples of all known types of AS were detected, but intron retention was the most common. Interestingly, the closest Arabidopsis (Arabidopsis thaliana) homologs of half of the AS genes identified in Populus are not reportedly alternatively spliced. Two genes encoding the protein of most interest in our study (high-isoelectric-point superoxide dismutase [hipI-SOD]) have been found in black cottonwood (Populus trichocarpa), designated PthipI-SODC1 and PthipI-SODC2. Analysis of the expressed sequence tag libraries has indicated the presence of two transcripts of PthipI-SODC1 (hipI-SODC1b and hipI-SODC1s). Alignment of these sequences with the PthipI-SODC1 gene showed that hipI-SODC1b was 69 bp longer than hipI-SODC1s due to an AS event involving the use of an alternative donor splice site in the sixth intron. Transcript analysis showed that the splice variant hipI-SODC1b was differentially expressed, being clearly expressed in cambial and xylem, but not phloem, regions. In addition, immunolocalization and mass spectrometric data confirmed the presence of hipI-SOD proteins in vascular tissue. The functionalities of the spliced gene products were assessed by expressing recombinant hipI-SOD proteins and in vitro SOD activity assays.


Molecular & Cellular Proteomics | 2013

Quantitative Proteomics Reveals that Plasma Membrane Microdomains from Poplar Cell Suspension Cultures are Enriched in Markers of Signal Transduction, Molecular Transport and Callose Biosynthesis

Vaibhav Srivastava; Erik Malm; Gustav Sundqvist; Vincent Bulone

The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1→3)-β-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.


Journal of Biomolecular Structure & Dynamics | 2014

Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation

Asalapuram Ramachand Pavankumar; Rajarathinam Kayathri; Natarajan Arul Murugan; Qiong Zhang; Vaibhav Srivastava; Chuka Okoli; Vincent Bulone; Gunaratna Kuttuva Rajarao; Hans Ågren

Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein–protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

Collaboration


Dive into the Vaibhav Srivastava's collaboration.

Top Co-Authors

Avatar

Gunnar Wingsle

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren S. McKee

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Malm

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge