Valentina Sirri
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Sirri.
Histochemistry and Cell Biology | 2008
Valentina Sirri; Silvio Urcuqui-Inchima; Pascal Roussel; Danièle Hernandez-Verdun
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed.
Journal of Cell Biology | 2002
Valentina Sirri; Danièle Hernandez-Verdun; Pascal Roussel
In higher eukaryotic cells, the nucleolus is a nuclear compartment assembled at the beginning of interphase, maintained during interphase, and disorganized during mitosis. Even if its structural organization appears to be undissociable from its function in ribosome biogenesis, the mechanisms that govern the formation and maintenance of the nucleolus are not elucidated. To determine if cell cycle regulators are implicated, we investigated the putative role of the cyclin-dependent kinases (CDKs) on ribosome biogenesis and nucleolar organization. Inhibition of CDK1–cyclin B during mitosis leads to resumption of rDNA transcription, but is not sufficient to induce proper processing of the pre-rRNA and total relocalization of the processing machinery into rDNA transcription sites. Similarly, at the exit from mitosis, both translocation of the late processing machinery and pre-rRNA processing are impaired in a reversible manner by CDK inhibitors. Therefore, CDK activity seems indispensable for the building of functional nucleoli. Furthermore, inhibition of CDKs in interphasic cells also hampered proper pre-rRNA processing and induced a dramatic disorganization of the nucleolus. Thus, we propose that the mechanisms governing both formation and maintenance of functional nucleoli involve CDK activities and couple the cell cycle to ribosome biogenesis.
The EMBO Journal | 2010
Claudio Guetg; Philipp Lienemann; Valentina Sirri; Ingrid Grummt; Danièle Hernandez-Verdun; Michael O. Hottiger; Martin Fussenegger; Raffaella Santoro
Maintenance of specific heterochromatic domains is crucial for genome stability. In eukaryotic cells, a fraction of the tandem‐repeated ribosomal RNA (rRNA) genes is organized in the heterochromatic structures. The principal determinant of rDNA silencing is the nucleolar remodelling complex, NoRC, that consists of TIP5 (TTF‐1‐interacting protein‐5) and the ATPase SNF2h. Here we showed that TIP5 not only mediates the establishment of rDNA silencing but also the formation of perinucleolar heterochromatin that contains centric and pericentric repeats. Our data indicated that the TIP5‐mediated heterochromatin is indispensable for stability of silent rRNA genes and of major and minor satellite repeats. Moreover, depletion of TIP5 impairs rDNA silencing, upregulates rDNA transcription levels and induces cell transformation. These findings point to a role of TIP5 in protecting genome stability and suggest that it can play a role in the cellular transformation process.
Journal of Cell Science | 2009
Alice Grob; Pascal Roussel; Jane E. Wright; Brian McStay; Danièle Hernandez-Verdun; Valentina Sirri
Sirtuins, also designated class III histone deacetylases, are implicated in the regulation of cell division, apoptosis, DNA damage repair, genomic silencing and longevity. The nucleolar Sirtuin7 (SIRT7) was reported to be involved in the regulation of ribosomal gene (rDNA) transcription, but there are no data concerning the regulation of SIRT7 during the cell cycle. Here we have analyzed the behavior of endogenous SIRT7 during mitosis, while rDNA transcription is repressed. SIRT7 remains associated with nucleolar organizer regions, as does the RNA polymerase I machinery. SIRT7 directly interacts with the rDNA transcription factor UBF. Moreover, SIRT7 is phosphorylated via the CDK1-cyclin B pathway during mitosis and dephosphorylated by a phosphatase sensitive to okadaic acid at the exit from mitosis before onset of rDNA transcription. Interestingly, dephosphorylation events induce a conformational modification of the carboxy-terminal region of SIRT7 before the release of mitotic repression of rDNA transcription. As SIRT7 activity is required to resume rDNA transcription in telophase, we propose that this conformational modification regulates onset of rDNA transcription.
Micron | 2000
Valentina Sirri; P Roussel; D Hernandez-Verdun
AgNOR proteins are a set of argyrophilic nucleolar proteins that accumulate in highly proliferating cells whereas their expression is very low in non-proliferating cells. Some of these proteins remain associated with the nucleolar organizer regions (NORs) during mitosis. In situ, the expression of AgNOR proteins is measured globally by quantification of the level of silver staining using morphometry and image analysis. To go deeper into the understanding of the relationship between the cell cycle and quantity of AgNOR proteins, it was necessary to determine the phases of cell cycle during which expression of AgNOR varies and what are the most variable proteins in each phase. To answer these questions, we set up the protocol permitting to detect and quantify AgNOR proteins on protein samples electrophoresed and transferred onto nitrocellulose membranes. This approach makes it possible to quantitatively evaluate individual AgNOR proteins and identify them, using nucleolar, nuclear and whole interphasic cell extracts, and chromosome-associated protein extracts. By this means, we identified nucleolin and protein B23 as the two major AgNOR proteins in the nucleolus during interphase and subunits of RNA polymerase I and transcription factor UBF as AgNOR proteins remaining associated with NORs during mitosis. We also observed that the increase in the level of nucleolin and protein B23 in rat liver seems to be linked with the cell cycle and not exclusively with stimulation of ribosomal gene (rDNA) transcription. Similarly in synchronized cells, the amount of nucleolin rapidly increases when cells enter the S phase (1.6-fold of the value of serum-deprived cells at 9 h, and 2.35-fold at 12 h after refeeding). The amount of protein B23 exhibits a lower and progressive increase with a maximum when the percentage of cells in G2 phase increased, i.e. after 24 h of cell cycle stimulation. We consider that the amount of AgNOR proteins can be a marker of proliferation, because this amount is related to cell cycle phases, schematically low for G1 phase and high for S-G2 phase. Thus, it is a measure of the relative proportion of cells in each phase, and consequently of the timing of each phase. The higher value indicates that the major part of the cells are in the S-G2 phase and correlatively few are in the G1 phase, and this characterizes a rapid cell cycle.
Cytometry | 1997
Valentina Sirri; Pascal Roussel; Marie‐Claude Gendron; Danièle Hernandez-Verdun
To know the biological basis allowing the use of Ag-NOR protein expression as proliferation marker in human malignancies, the relationship between cell cycle and amount of Ag-NOR protein was analyzed. The quantification of the two major Ag-NOR proteins, nucleolin and protein B23, was performed in exponentially growing, serum-deprived, and cell-cycle stimulated cells. Expression of nucleolin was low in serum-deprived cells and increased mostly in S phase during cell-cycle stimulation. Conversely, expression of protein B23 was slightly repressed in serum-deprived cells, and increased progressively until G2 phase during cell-cycle stimulation. The accumulation of nucleolin and protein B23 in G2 compared to G1 was demonstrated using sorted phase-specific cells. In G0, cells sorted according to their very low RNA content, and the amount of Ag-NOR proteins was half of that found in G1 cells, nucleolin being only weakly detectable. Therefore, the expression of nucleolin increased between G0-G1 and G1-S phases. These data support the hypothesis that quantification of Ag-NOR proteins is an estimation of the percentage of cells in each cell cycle phase because their amount is high in S-G2 and low in G1 phases.
Oncogene | 2001
Thér`se David-Pfeuty; Yolande Nouvian-Dooghe; Valentina Sirri; Pascal Roussel; Dani`le Hernandez-Verdun
Two specific inhibitors of cyclin-dependent kinase 2 (Cdk2), roscovitine and olomoucine, have been shown recently to induce nuclear accumulation of wt p53 and nucleolar unravelling in interphase human untransformed IMR-90 and breast tumor-derived MCF-7 cells. Here, we show that the early response of MCF-7 cells to roscovitine is fully reversible since a rapid restoration of nucleolar organization followed by an induction of p21WAF1/CIP1, a downregulation of nuclear wt p53 and normal cell cycle resumption occurs if the compound is removed after 4 h. Interestingly, similar reversible effects are also induced by the casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole. Upon short-term treatment also, both compounds significantly, but reversibly, reduce the level of 45S precursor ribosomal RNA. Cells exposed to the two types of protein kinase inhibitors for longer times keep exhibiting altered nucleolar and wt p53 features, yet they strikingly differentiate in that most roscovitine-treated cells fail to ever accumulate high levels of p21WAF1/CIP1 in contrast with DRB-treated ones. In both cases, however, the cells eventually fall into an irreversible state and die. Moreover, we found that constitutive overexpression of p21WAF1/CIP1 alters the nucleolar unravelling process in the presence of DRB, but not of roscovitine, suggesting a role for this physiological Cdk inhibitor in the regulation of nucleolar function. Our data also support the notion that both roscovitine- and DRB-sensitive protein kinases, probably including Cdk2 and CKII, via their dual implication in the p53-Rb pathway and in ribosomal biogenesis, would participate in coupling cell growth with cell division.
Journal of Histochemistry and Cytochemistry | 1995
Valentina Sirri; Pascal Roussel; Davide Treré; Massimo Derenzini; Danièle Hernandez-Verdun
Ribosomal genes are associated with a subset of acidic proteins called Ag-NOR proteins. The amount of nucleolar Ag-NOR proteins varies, depending on nucleolar activity and/or cell proliferation. To understand the linkage between the amount of Ag-NOR proteins, ribosome biogenesis, and cell proliferation, we investigated the variability of Ag-NOR proteins in rRNA-stimulated cells maintained in G1 and in rRNA-stimulated cells entering the mitotic cycle. Rat hepatocytes were stimulated with cortisol for rRNA synthesis (1, 4, and 8 hr) and the cell cycle was induced by hepatectomy in regenerating hepatocytes (3-21 hr). In non-stimulated hepatocytes, nucleolin and protein B23 were the two major Ag-NOR proteins, corresponding to 70% of total Ag-NOR staining. In hepatocytes stimulated for rRNA synthesis in G1, the amount of Ag-NOR proteins was only slightly increased, whereas in cycle-stimulated cells it was increased 3.04-fold. This is the consequence of a differential increase of the major Ag-NOR proteins that appears earlier and is proportionally more important for nucleolin (3.5-fold) than for protein B23 (twofold) and also for the increase of several minor Ag-NOR proteins. We conclude that, in dividing cells, the mean value of the Ag-NOR proteins measured reflects the percentage of cells in the different phases. This could explain why the amount of Ag-NOR proteins can be used as a marker of cell proliferation.
Journal of Cell Science | 2007
Tanguy Lechertier; Valentina Sirri; Danièle Hernandez-Verdun; Pascal Roussel
We report the characterization of a nucleolar localization sequence (NoLS) that targets the green fluorescent protein (GFP) into the granular component (GC) of nucleoli. This NoLS interacts in vitro specifically and directly with the major nucleolar protein B23 and more precisely with the region of B23 including the two acidic stretches. The affinity of NoLS for B23 is stronger than that of the HIV-1 Rev protein in vitro. Moreover, B23-NoLS interaction also occurs in vivo. Indeed, (1) NoLS confers on the GFP the behavior of B23 throughout the cell cycle, (2) the GFP-NoLS fusion and B23 remain colocalized after drug treatments, (3) a selective delocalization of B23 from nucleoli to nucleoplasm induces a concomitent delocalization of the GFP-NoLS fusion, and (4) the fusion of NoLS to fibrillarin makes it possible to colocalize fibrillarin and B23. Interestingly, by fusing NoLS to fibrillarin, both fibrillarin and the fibrillarin partner Nop56 are mislocalized in the GC of nucleoli. Similarly, by fusing the NoLS to MafG, part of the nuclear transcription factor NF-E2 composed of both MafG and p45 NF-E2, NF-E2 is redirected from the nucleoplasm to the nucleoli. Thus, we propose that the NoLS may be used as a tool to visualize and prove protein interactions in a cellular context.
Molecular and Cellular Biology | 2004
Lionel A. Tintignac; Valentina Sirri; Marie Pierre Leibovitch; Yann Lécluse; Maria Castedo; Didier Métivier; Guido Kroemer; Serge A. Leibovitch
ABSTRACT The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G2/M transition by controlling the expression of p21Waf1/Cip1 (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G2. In growing myoblasts, MyoD reaccumulates during G2 concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G2 and delays M-phase entry. This G2 arrest is not observed in p21−/− cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G2/M transition.