Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeria Conti is active.

Publication


Featured researches published by Valeria Conti.


Oxidative Medicine and Cellular Longevity | 2012

Is Physical Activity Able to Modify Oxidative Damage in Cardiovascular Aging

Graziamaria Corbi; Valeria Conti; Giusy Russomanno; Giuseppe Rengo; Piergiusto Vitulli; Anna Linda Ciccarelli; Amelia Filippelli; Nicola Ferrara

Aging is a multifactorial process resulting in damage of molecules, cells, and tissues. It has been demonstrated that the expression and activity of antioxidant systems (SOD, HSPs) are modified in aging, with reduced cell ability to counteract the oxidant molecules, and consequent weak resistance to ROS accumulation. An important mechanism involved is represented by sirtuins, the activity of which is reduced by aging. Physical activity increases the expression and the activity of antioxidant enzymes, with consequent reduction of ROS. Positive effects of physical exercise in terms of antioxidant activity could be ascribable to a greater expression and activity of SOD enzymes, HSPs and SIRT1 activity. The antioxidant effects could increase, decrease, or not change in relation to the exercise protocol. Therefore, some authors by using a new approach based on the in vivo/vitro technique demonstrated that the highest survival and proliferation and the lowest senescence were obtained by performing an aerobic training. Therefore, the in vivo/vitro technique described could represent a good tool to better understand how the exercise training mediates its effects on aging-related diseases, as elderly with heart failure that represents a special population in which the exercise plays an important role in the improvement of cardiovascular function, quality of life, and survival.


Frontiers in Physiology | 2013

Adrenoreceptors and nitric oxide in the cardiovascular system

Valeria Conti; Giusy Russomanno; Graziamaria Corbi; Viviana Izzo; Carmine Vecchione; Amelia Filippelli

Nitric Oxide (NO) is a small molecule that continues to attract much attention from the scientific community. Since its discovery, it has been evident that NO has a crucial role in the modulation of vascular tone. Moreover, NO is involved in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. NO effects can be either dependent or independent on cGMP, and rely also upon several mechanisms such as the amount of NO, the compartmentalization of the enzymes responsible for its biosynthesis (NOS), and the local redox conditions. Several evidences highlighted the correlation among adrenoreceptors activity, vascular redox status and NO bioavailability. It was suggested a possible crosstalk between NO and oxidative stress hallmarks in the endothelium function and adaptation, and in sympathetic vasoconstriction control. Adrenergic vasoconstriction is a balance between a direct vasoconstrictive effect on smooth muscle and an indirect vasorelaxant action caused by α2- and β-adrenergic endothelial receptor-triggered NO release. An increased oxidative stress and a reduction of NO bioavailability shifts this equilibrium causing the enhanced vascular adrenergic responsiveness observed in hypertension. The activity of NOS contributes to manage the adrenergic pathway, thus supporting the idea that the endothelium might control or facilitate β-adrenergic effects on the vessels and the polymorphic variants in β2-receptors and NOS isoforms could influence aging, some pathological conditions and individual responses to drugs. This seems to be dependent, almost in part, on differences in the control of vascular tone exerted by NO. Given its involvement in such important mechanisms, the NO pathway is implicated in aging process and in both cardiovascular and non-cardiovascular conditions. Thus, it is essential to pinpoint NO involvement in the regulation of vascular tone for the effective clinical/therapeutic management of cardiovascular diseases (CVD).


Frontiers in Physiology | 2013

Adrenergic signaling and oxidative stress: a role for sirtuins?

Graziamaria Corbi; Valeria Conti; Giusy Russomanno; Giancarlo Longobardi; Giuseppe Furgi; Amelia Filippelli; Nicola Ferrara

The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.


Frontiers in Pharmacology | 2016

Antioxidant Supplementation in the Treatment of Aging-Associated Diseases.

Valeria Conti; Viviana Izzo; Graziamaria Corbi; Giusy Russomanno; Valentina Manzo; Federica De Lise; Alberto Di Donato; Amelia Filippelli

Oxidative stress is generally considered as the consequence of an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of antioxidants supplementation therapies, which might partially depend from an underestimation of the patient specific metabolic demand and genetic background, are presented.


Medicine and Science in Sports and Exercise | 2013

Aerobic Training Workload Affects Human Endothelial Cells Redox Homeostasis.

Valeria Conti; Giusy Russomanno; Graziamaria Corbi; Germano Guerra; Concetta Grasso; Walter Filippelli; Virginia Paribello; Nicola Ferrara; Amelia Filippelli

PURPOSE Moderate aerobic exercise reduces oxidative stress, whereas intense physical activity may produce the opposite result. At present, the effects of different exercise loads on oxidative stress markers and the response of human cells to different exercise volumes have not been fully elucidated. METHODS Human (Eahy-926) endothelial cells (EC), exposed or not exposed to oxidative stress, were conditioned with sera from two groups of triathletes practicing at different workloads. RESULTS Although no differences in functional and hemodynamic variables were observed between the two groups of triathletes, significant changes in some markers for oxidative stress were found in their sera. Thiobarbituric acid reactive substances and superoxide dismutase activity were similar, but triathletes practicing the sport at lower volume (T1) had higher serum nitric oxide and lower catalase activity than triathletes performing the training at greater load (T2). The EC conditioned with serum from T1 (T1-EC) showed higher survival and proliferation rates and lower senescence levels than the EC supplemented with T2 (T2-EC) serum both before and after oxidative stress induction. These effects depended on catalase as demonstrated via enzyme activity inhibition using 3-amino-1,2,4-triazole. After oxidative stress induction, Sirt1 activity, a regulator of the oxidative stress response, was significantly increased in the T1-EC but not in the T2-EC. Moreover, the T1-EC required less catalase activity than the T2-EC to counteract an equal amount of oxidative stress after H2O2 administration. CONCLUSION This study demonstrates that the beneficial effects of aerobic exercise are eliminated when the training is performed at a greater workload. Moreover, we suggest an oxidative stress marker, serum catalase activity, as a valid tool to use in the supervision of changes to exercise volume.


PLOS ONE | 2013

Warfarin Anticoagulant Therapy: A Southern Italy Pharmacogenetics-Based Dosing Model

Cristina Mazzaccara; Valeria Conti; Rosario Liguori; Vittorio Simeon; Mario Toriello; Angelo Severini; Corrado Perricone; Alfonso Meccariello; Pasquale Meccariello; Dino Franco Vitale; Amelia Filippelli; Lucia Sacchetti

Background and Aim Warfarin is the most frequently prescribed anticoagulant worldwide. However, warfarin therapy is associated with a high risk of bleeding and thromboembolic events because of a large interindividual dose-response variability. We investigated the effect of genetic and non genetic factors on warfarin dosage in a South Italian population in the attempt to setup an algorithm easily applicable in the clinical practice. Materials and Methods A total of 266 patients from Southern Italy affected by cardiovascular diseases were enrolled and their clinical and anamnestic data recorded. All patients were genotyped for CYP2C9*2,*3, CYP4F2*3, VKORC1 -1639 G>A by the TaqMan assay and for variants VKORC1 1173 C>T and VKORC1 3730 G>A by denaturing high performance liquid chromatography and direct sequencing. The effect of genetic and not genetic factors on warfarin dose variability was tested by multiple linear regression analysis, and an algorithm based on our data was established and then validated by the Jackknife procedure. Results Warfarin dose variability was influenced, in decreasing order, by VKORC1-1639 G>A (29.7%), CYP2C9*3 (11.8%), age (8.5%), CYP2C9*2 (3.5%), gender (2.0%) and lastly CYP4F2*3 (1.7%); VKORC1 1173 C>T and VKORC1 3730 G>A exerted a slight effect (<1% each). Taken together, these factors accounted for 58.4% of the warfarin dose variability in our population. Data obtained with our algorithm significantly correlated with those predicted by the two online algorithms: Warfarin dosing and Pharmgkb (p<0.001; R2 = 0.805 and p<0.001; R2 = 0.773, respectively). Conclusions Our algorithm, which is based on six polymorphisms, age and gender, is user-friendly and its application in clinical practice could improve the personalized management of patients undergoing warfarin therapy.


Oxidative Medicine and Cellular Longevity | 2016

Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases.

Maurizio Forte; Valeria Conti; Antonio Damato; Mariateresa Ambrosio; Annibale Alessandro Puca; Sebastiano Sciarretta; Giacomo Frati; Carmine Vecchione; Albino Carrizzo

Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.


Analytical Cellular Pathology | 2015

Sirtuin 1 and Aging Theory for Chronic Obstructive Pulmonary Disease

Valeria Conti; Graziamaria Corbi; Valentina Manzo; Girolamo Pelaia; Amelia Filippelli; Alessandro Vatrella

Chronic Obstructive Pulmonary disease (COPD) is an inflammatory syndrome that represents an increasing health problem, especially in the elderly population. Drug therapies are symptomatic and inadequate to contrast disease progression and mortality. Thus, there is an urgent need to clarify the molecular mechanisms responsible for this condition in order to identify new biomarkers and therapeutic targets. Processes including oxidant/antioxidant, protease/antiprotease, and proliferative/antiproliferative balance and control of inflammatory response become dysfunctional during aging as well as in COPD. Recently it was suggested that Sirtuin 1 (SIRT1), an antiaging molecule involved in the response to oxidative stress and chronic inflammation, is implicated in both development and progression of COPD. The present review focuses on the involvement of SIRT1 in the regulation of redox state, inflammation, and premature senescence, all crucial characteristics of COPD phenotypes. Recent evidence corroborating the statement of the “aging theory for COPD” was also discussed.


Current Drug Targets | 2017

Sirtuins: Possible Clinical Implications in Cardio and Cerebrovascular Diseases

Valeria Conti; Maurizio Forte; Graziamaria Corbi; Giusy Russomanno; Luigi Formisano; Alessandro Landolfi; Viviana Izzo; Amelia Filippelli; Carmine Vecchione; Albino Carrizzo

Mammalian sirtuins (SIRT1-7) are NAD+-dependent deacetylases, which play an important role in aging and in a wide range of cellular functions. SIRT1, the best-characterized member of the family, acts as a sensor of the redox state and triggers in the cell the appropriate defense response. A large body of evidence has showed that SIRT1 induces both cellular and systemic protective effects in the cardiovascular system by preventing stress-induced apoptosis and senescence, and mitigating endothelial dysfunction. Hence, SIRT1 is now foreseen as a potential therapeutic target for a growing number of cardiovascular diseases. Recently, it has been suggested that SIRT1 activation could also be considered as a neuroprotective strategy. Indeed, SIRT1 protects against ischemia/reperfusion injury both in vitro and in vivo and avoids severe ischemic damage by preserving cerebral blood flow. In the last years it was suggested that others sirtuins, in particular SIRT3 and SIRT6, could exert beneficial effects in vascular syndromes. The aim of this review was to describe and discuss recent experimental evidence on the effects of SIRT1 and other sirtuins on the pathophysiology of cardio- and cerebrovascular diseases, underlying a potential therapeutic effect of these enzymes in the treatment and/or prevention of such conditions.


Frontiers in Pharmacology | 2016

Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans?

Graziamaria Corbi; Valeria Conti; Sergio Davinelli; Giovanni Scapagnini; Amelia Filippelli; Nicola Ferrara

Although several efforts have been made in the search for genetic and epigenetic patterns linked to diseases, a comprehensive explanation of the mechanisms underlying pathological phenotypic plasticity is still far from being clarified. Oxidative stress and inflammation are two of the major triggers of the epigenetic alterations occurring in chronic pathologies, such as neurodegenerative diseases. In fact, over the last decade, remarkable progress has been made to realize that chronic, low-grade inflammation is one of the major risk factor underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant immunomodulatory and/or anti-inflammatory activities in the context of brain aging. Starting by the evidence that a common denominator of aging and chronic degenerative diseases is represented by inflammation, and that several dietary phytochemicals are able to potentially interfere with and regulate the normal function of cells, in particular neuronal components, aim of this review is to summarize recent studies on neuroinflammaging processes and proofs indicating that specific phytochemicals may act as positive modulators of neuroinflammatory events. In addition, critical pathways involved in mediating phytochemicals effects on neuroinflammaging were discussed, exploring the real impact of these compounds in preserving brain health before the onset of symptoms leading to inflammatory neurodegeneration and cognitive decline.

Collaboration


Dive into the Valeria Conti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola Ferrara

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viviana Izzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Rengo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge