Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeria Tekiel is active.

Publication


Featured researches published by Valeria Tekiel.


Molecular & Cellular Proteomics | 2015

Towards high-throughput immunomics for infectious diseases: use of next-generation peptide microarrays for rapid discovery and mapping of antigenic determinants

Santiago J. Carmona; Morten Nielsen; Claus Schafer-Nielsen; Juan Mucci; Jaime Altcheh; Virginia Balouz; Valeria Tekiel; Alberto C.C. Frasch; Oscar Campetella; Carlos A. Buscaglia; Fernán Agüero

Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens.


Acta Tropica | 2013

An improved DNA isolation technique for PCR detection of Strongyloides stercoralis in stool samples

Silvia Repetto; C.D. Alba Soto; S.I. Cazorla; M.L. Tayeldin; S. Cuello; M.B. Lasala; Valeria Tekiel; S.M. González Cappa

Strongyloides stercoralis is a nematode that causes severe infections in immunocompromised patients. The low parasitic burden of chronically infected patients makes diagnosis difficult to achieve by conventional methods. Here, an in-house (IH) method for the isolation of parasite DNA from stools and a PCR assay for the molecular diagnosis of S. stercoralis were optimized. DNA yield and purity improved with the IH method which included a step of incubation of stool samples with a glycine-SDS buffer and mechanical disruption prior to DNA extraction. For the PCR assay, the addition of bovine serum albumin was required to neutralize inhibitors present in stool. The analytical sensitivity of the PCR using DNA as template, isolated with the IH method, was superior to the commercial one. This study demonstrates that a combined method that adds the step of glycine-SDS buffer incubation plus mechanical disruption prior to DNA isolation with the commercial kit increased PCR sensitivity to levels of the IH method. Finally, our assay was tested on 17 clinical samples. With the IH method for DNA isolation, a S. stercoralis specific band was detected by PCR in the first stool sample in all patients (17/17), while with the commercial kit, our S. stercoralis-specific band was only observed in 7 samples. The superior efficiency of the IH and combined methods over the commercial kit was demonstrated when applied to clinical samples with low parasitic burden. These results show that the DNA extraction procedure is a key to increase sensitivity of the S. stercoralis PCR assay in stool samples. The method developed here could help to improve the molecular diagnosis of S. stercoralis.


Journal of Parasitology | 2002

TRYPANOSOMA CRUZI: EFFECT OF PARASITE SUBPOPULATION ON MURINE PREGNANCY OUTCOME

María Elisa Solana; Ana M. Celentano; Valeria Tekiel; Marta Jones; Stella M. González Cappa

C3H/HeN female mice infected with distinct Trypanosoma cruzi subpopulations (RA strain [pantropic/reticulotropic] and K98 clone of the CA-I strain [myotropic]) show differences both in inflammatory compromise of the genital tract and in the outcome of pregnancy. The group of mice infected with the K98 clone show lymphomononuclear infiltrates in pelvian fat and in uterus interstitium, coexisting with the presence of T. cruzi DNA, and show moderate oophoritis, perioophoritis, and vasculitis. However, neither parasite DNA nor inflammatory foci were detected in the uterus, and only mild oophoritis was observed among RA-infected mice at mating time. Independently from the parasite subpopulation, females developed estrous 30 days postinoculation (PI), and at the same time, parasite counts were similar for K98 and for RA-infected mice. However, fertility was significantly diminished in K98-infected females. On day 14 of gestation, fetal resorptions increased in this group and cannot be attributed to hormonal disbalance because similar serum progesterone levels were found in all groups. At this time (44 days PI), parasitemia was higher in K98- than in RA-infected mice. However, resorptions were not triggered by massive infection because polymerase chain reaction failed to prove parasite DNA in resorbing fetuses. In contrast with K98 females, RA-infected mice delivered T. cruzi–infected newborns.


PLOS ONE | 2013

TcTASV-C, a protein family in Trypanosoma cruzi that is predominantly trypomastigote-stage specific and secreted to the medium.

Guillermo Bernabó; Gabriela V. Levy; María Ziliani; Lucas Daniel Caeiro; Daniel O. Sánchez; Valeria Tekiel

Among the several multigene families codified by the genome of T. cruzi, the TcTASV family was the latest discovered. The TcTASV (Trypomastigote, Alanine, Serine, Valine) family is composed of ∼40 members, with conserved carboxi- and amino-termini but with a variable central core. According to the length and sequence of the central region the family is split into 3 subfamilies. The TcTASV family is conserved in the genomes of - at least - lineages TcI and TcVI and has no orthologues in other trypanosomatids. In the present work we focus on the study of the TcTASV-C subfamily, composed by 16 genes in the CL Brener strain. We determined that TcTASV-C is preferentially expressed in trypomastigotes, but it is not a major component of the parasite. Both immunoflourescence and flow cytometry experiments indicated that TcTASV-C has a clonal expression, i.e. it is not expressed by all the parasites of a certain population at the same time. We also determined that TcTASV-C is phosphorylated and glycosylated. TASV-C is attached to the parasite surface by a GPI anchor and is shed spontaneously into the medium. About 30% of sera from infected hosts reacted with TcTASV-C, confirming its exposition to the immune system. Its superficial localization and secretory nature suggest a possible role in host-parasite interactions.


PLOS Neglected Tropical Diseases | 2010

TcTASV: A Novel Protein Family in Trypanosoma cruzi Identified from a Subtractive Trypomastigote cDNA Library

María Ziliani; Fernán Agüero; Guillermo Bernabó; Daniel O. Sánchez; Valeria Tekiel

Background The identification and characterization of antigens expressed in Trypanosoma cruzi stages that parasitize mammals are essential steps for the development of new vaccines and diagnostics. Genes that are preferentially expressed in trypomastigotes may be involved in key processes that define the biology of trypomastigotes, like cell invasion and immune system evasion. Methodology/Principal Findings With the initial aim of identifying trypomastigote-specific expressed tags, we constructed and sequenced an epimastigote-subtracted trypomastigote cDNA library (library TcT-E). More than 45% of the sequenced clones of the library could not be mapped to previously annotated mRNAs or proteins. We validated the presence of these transcripts by reverse northern blot and northern blot experiments, therefore providing novel information about the mRNA expression of these genes in trypomastigotes. A 280-bp consensus element (TcT-E element, TcT-Eelem) located at the 3′ untranslated region (3′ UTR) of many different open reading frames (ORFs) was identified after clustering the TcT-E dataset. Using an RT-PCR approach, we were able to amplify different mature mRNAs containing the same TcT-Eelem in the 3′ UTR. The proteins encoded by these ORFs are members of a novel surface protein family in T. cruzi, (which we named TcTASV for T. cruzi Trypomastigote, Alanine, Serine and Valine rich proteins). All members of the TcTASV family have conserved coding amino- and carboxy-termini, and a central variable core that allows partitioning of TcTASV proteins into three subfamilies. Analysis of the T. cruzi genome database resulted in the identification of 38 genes/ORFs for the whole TcTASV family in the reference CL-Brener strain (lineage II). Because this protein family was not found in other trypanosomatids, we also looked for the presence of TcTASV genes in other evolutionary lineages of T. cruzi, sequencing 48 and 28 TcTASVs members from the RA (lineage II) and Dm28 (lineage I) T. cruzi strains respectively. Detailed phylogenetic analyses of TcTASV gene products show that this gene family is different from previously characterized mucin (TcMUCII), mucin-like, and MASP protein families. Conclusions/Significance We identified TcTASV, a new gene family of surface proteins in T. cruzi.


Parasitology | 1997

Chagas' disease: reactivity against homologous tissues induced by different strains of Trypanosoma cruzi.

Valeria Tekiel; Gerardo A. Mirkin; S.M. González Cappa

We have previously reported that the mechanisms of neuromyopathic damage induced by Trypanosoma cruzi are mediated by T cells and are parasite-strain dependent. In the present study our aim was to determine whether the humoral response against muscle and nervous system is also parasite-strain dependent. Of the sera from mice infected with RA and CA-I. T. cruzi strains, 93% reacted against antigens of the nervous system (sciatic nerve, spinal cord and brain). No differences in the ability to recognize heart antigens were found between RA (48%) and CA-I (63%) antisera. Reactivity against skeletal muscle was only relevant in anti-CA-I sera at 270 days post-infection. Each of the antisera assayed in Western blots developed a particular antigenic pattern, but 3 antigens in the nervous system of molecular weight 48, 60 and 70 kDa were detected by 42, 28 and 23% of the sera, respectively. On the other hand, deposits of IgG were observed at the interstitial matrix in sciatic nerve and as endomisial and sarcolemmal patterns in skeletal muscle by IFAT for both RA and CA-I antisera. Absorption of sera with parasite antigens did not abolish the autoreactivity. Our results suggest that major serum autoreactivity from T. cruzi-infected mice is not parasite-strain dependent and does not arise from molecular mimicry.


Vaccine | 2010

Dendritic cells devoid of IL-10 induce protective immunity against the protozoan parasite Trypanosoma cruzi.

Catalina D. Alba Soto; María Elisa Solana; Carolina V. Poncini; Agustina M. Pino-Martinez; Valeria Tekiel; Stella Maris González-Cappa

In diverse models of microbial infections, protection is improved by immunization with dendritic cells (DC) loaded with whole pathogen lysate. However, pathogens that modulate DC function as a way to evade immunity may represent a challenge for these vaccination strategies. Thus, DC must be instructed in a particular manner to circumvent this issue and drive an effective immune response. Trypanosoma cruzi or its molecules alter DC function and, as we demonstrated, this phenomenon is associated with the parasite-driven stimulation of IL-10 production by DC. Here, we show that DC from IL-10-deficient mice pulsed in vitro with trypomastigote lysate secreted increased amounts of Th1-related cytokines and stimulated higher allogeneic and antigen-specific lymphocyte responses than their wild-type counterparts. In a model of DC-based immunization, these antigen-pulsed IL-10-deficient DC conferred protection against T. cruzi infection to recipient mice. Efficient immunity was associated with enhanced antigen-specific IFN-gamma production and endogenous DC activation. We illustrate for the first time a DC-based vaccination against T. cruzi and evidence the key role of IL-10 produced by sensitizing DC in inhibiting the induction of protection. These results support the rationale for vaccination strategies that timely suppress the effect of specific cytokines secreted by antigen presenting DC.


Parasites & Vectors | 2011

Gene discovery in Triatoma infestans

María L Avila; Valeria Tekiel; Georgina Moretti; Soledad Nicosia; Jacqueline Bua; E.M. Lammel; María M. Stroppa; Nelia M. Gerez de Burgos; Daniel O. Sánchez

BackgroundTriatoma infestans is the most relevant vector of Chagas disease in the southern cone of South America. Since its genome has not yet been studied, sequencing of Expressed Sequence Tags (ESTs) is one of the most powerful tools for efficiently identifying large numbers of expressed genes in this insect vector.ResultsIn this work, we generated 826 ESTs, resulting in an increase of 47% in the number of ESTs available for T. infestans. These ESTs were assembled in 471 unique sequences, 151 of which represent 136 new genes for the Reduviidae family.ConclusionsAmong the putative new genes for the Reduviidae family, we identified and described an interesting subset of genes involved in development and reproduction, which constitute potential targets for insecticide development.


PLOS ONE | 2015

Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in Trypanosoma brucei

Gabriela V. Levy; Carolina P. Bañuelos; Analía G. Níttolo; Gastón E. Ortiz; Nicolás Mendiondo; Georgina Moretti; Valeria Tekiel; Daniel O. Sánchez

Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.


Parasitology | 2016

The TcTASV proteins are novel promising antigens to detect active Trypanosoma cruzi infection in dogs.

N. Floridia-Yapur; M. Monje Rumi; Paula G. Ragone; Juan J. Lauthier; Nicolás Tomasini; A. Alberti D'amato; Patricio Diosque; Rubén O. Cimino; J. D. Marco; P. Barroso; Daniel O. Sánchez; Julio R. Nasser; Valeria Tekiel

In regions where Chagas disease is endemic, canine Trypanosoma cruzi infection is highly correlated with the risk of transmission of the parasite to humans. Herein we evaluated the novel TcTASV protein family (subfamilies A, B, C), differentially expressed in bloodstream trypomastigotes, for the detection of naturally infected dogs. A gene of each TcTASV subfamily was cloned and expressed. Indirect enzyme-linked immunosorbent assays (ELISA) were developed using recombinant antigens individually or mixed together. Our results showed that dogs with active T. cruzi infection differentially reacted against the TcTASV-C subfamily. The use of both TcTASV-C plus TcTASV-A proteins (Mix A+C-ELISA) enhanced the reactivity of sera from dogs with active infection, detecting 94% of the evaluated samples. These findings agree with our previous observations, where the infected animals exhibited a quick anti-TcTASV-C antibody response, coincident with the beginning of parasitaemia, in a murine model of the disease. Results obtained in the present work prove that the Mix A+C-ELISA is a specific, simple and cheap technique to be applied in endemic areas in screening studies. The Mix A+C-ELISA could help to differentially detect canine hosts with active infection and therefore with high impact in the risk of transmission to humans.

Collaboration


Dive into the Valeria Tekiel's collaboration.

Top Co-Authors

Avatar

Daniel O. Sánchez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Fernán Agüero

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriela V. Levy

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto C.C. Frasch

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana M. Celentano

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Analía G. Níttolo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos A. Buscaglia

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge