Valerie A. Barber
University of Alaska Fairbanks
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valerie A. Barber.
Nature | 2000
Valerie A. Barber; Glenn P. Juday; Bruce P. Finney
The extension of growing season at high northern latitudes seems increasingly clear from satellite observations of vegetation extent and duration. This extension is also thought to explain the observed increase in amplitude of seasonal variations in atmospheric CO2 concentration. Increased plant respiration and photosynthesis both correlate well with increases in temperature this century and are therefore the most probable link between the vegetation and CO2 observations. From these observations, it has been suggested that increases in temperature have stimulated carbon uptake in high latitudes and for the boreal forest system as a whole. Here we present multi-proxy tree-ring data (ring width, maximum late-wood density and carbon-isotope composition) from 20 productive stands of white spruce in the interior of Alaska. The tree-ring records show a strong and consistent relationship over the past 90 years and indicate that, in contrast with earlier predictions, radial growth has decreased with increasing temperature. Our data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest. If this limitation in growth due to drought stress is sustained, the future capacity of northern latitudes to sequester carbon may be less than currently expected.
Ecology Letters | 2011
Pieter S. A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biomes margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biomes southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.
Biogeochemistry | 1992
Stephen C. Whalen; William S. Reeburgh; Valerie A. Barber
Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH4 oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH4) headspace, (b) estimating CH4 oxidation rates from soil CH4 distributions and (c)222Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 PPM CH4) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH4) headspaces, and (g) jar experiments on core sections involving tracer additions of14CH4. Short-term unamended chamber measurements,222Rn-calibrated flux measurements, and soil CH4 distributions show independently that the soils are capable of oxidizing atmospheric CH4 at rates ranging to < 2 mg m−2 d−1. Jar experiments with free-air headspaces and soil CH4 profiles show that CH4 oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH4 oxidation occurs at low (< 0.9 ppm) thresholds. The14CH4-amended jar experiments show the distribution of end products of CH4 oxidation; 60% is transformed to CO2 and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH4 oxidation and indicate potential CH4 oxidation rates as high as 867 mg m−2 d−1. Methane oxidation in moist soils modulates CH4 emission and can serve as a negative feedback on atmospheric CH4 increases.
Climatic Change | 2004
Valerie A. Barber; Glenn P. Juday; Bruce P. Finney; Martin Wilmking
Maximum latewood density and δ 13C discrimination of Interior Alaska white spruce were used to reconstruct summer (May through August) temperature at Fairbanks for the period 1800–1996, one of the first high-resolution reconstructions for this region. This combination of latewood density and δ 13C discrimination explains 59.9% of the variance in summer temperature during the period of record 1906–1996. The 200-yr. reconstruction is characterized by 7 decadal-scale regimes. Regime changes are indicated at 1816, 1834, 1879, 1916, 1937, and 1974, are abrupt, and appear to be the result of synoptic scale climate changes. The mean of summer temperature for the period of reconstruction (1800–1996) was 13.49 °C. During the period of instrument record (1903–1996) the mean of summer temperature was 13.31 °C for both the reconstruction and the recorded data. The coldest interval was 1916–1937 (12.62 ° C) and the warmest was 1974–1996 (14.23 °C) for the recorded data. The reconstruction differs from records of northern hemisphere temperatures over this period, especially because of Interior Alaska warm periods reconstructed from 1834 to 1851 (14.24 °C) and from 1862 to 1879 (14.19 °C) and because of the cool period in the early part of the 20th century (1917–1974). We show additional tree ring data that support our reconstruction of these warm periods. Alternate hypotheses involving autogenic effect of tree growth on the site, altered tree sensitivity, or novel combinations of temperature and precipitation were explored and while they cannot be ruled out as contributors to the anomalously warm 19th century reconstruction, they were not supported by available data. White spruce radial growth is highly correlated with reconstructed summer temperature, and temperature appears to be a reliable index of carbon uptake in this system.
Quaternary Science Reviews | 2001
Mary E. Edwards; Cary J. Mock; Bruce P. Finney; Valerie A. Barber; Patrick J. Bartlein
The paleoclimatic history of a region can be viewed as a series of surface temperature and moisture anomalies through time. The effects of changes in large-scale climatic controls (e.g., insolation, major circulation controls) can be mediated by the influence of smaller-scale controls (e.g., topographic barriers, coastlines); this may result in heterogenous surface climatic responses at the regional and sub-regional scale. Divergent paleoclimatic trajectories between regions may be explainable in terms of such meso-scale patterns. Using modern analogues for paleoclimate we examine how the sequence of climatic variations in eastern interior Alaska during the interval 12,000–0 14C yr BP could have been generated by specific atmospheric circulation patterns. Fossil-pollen and lake-level records document the long-term trends in temperature and effective moisture for the region. Water-balance modelling provides additional estimates of paleoprecipitation. Synoptic climatological patterns are described using the modern (instrumental) record of upper-level and sea-level pressure, surface temperature, and precipitation. At 12,000 14C yr BP, eastern interior Alaska was cooler and drier than present, a situation generated today by a southward displacement of the jet stream. Conditions warmer and drier than present at 9000 14C yr BP may have been generated by increased ridging north of Alaska and a weakened westerly circulation. Warmer, wetter conditions than present possibly prevailed in the late-middle Holocene; these might reflect ridging over Alaska and troughing further west. Cool, wet conditions feature enhanced westerly flow into Alaska through an eastward shift in the east Asian trough and positive pressure anomalies in the North Pacific; they may be analogous to cold periods of the Little Ice Age. The analogues demonstrate how surface conditions in other parts of Beringia may sometimes be similar to, while at other times different from those in the eastern interior. These broader spatial patterns provide hypotheses about past climates that can be tested with paleoclimatological data. For example, the widespread positive temperature anomalies associated with the warm/dry (9000 14C yr BP) analogue fit with the expansion northward of the eastern Siberian treeline. The anomalously cool conditions in northeast Siberia associated with the warm/wet analogue may explain the continued (late-middle Holocene) treeline advance in Alaska while there was retreat in Siberia.
Journal of Paleolimnology | 2000
Valerie A. Barber; Bruce P. Finney
Hydrologic models are developed for two lakes in interior Alaska to determine quantitative estimates of precipitation over the past 12,500 yrs. Lake levels were reconstructed from core transects for these basins, which probably formed prior to the late Wisconsin. Lake sediment cores indicate that these lakes were shallow prior to 12,500 yr B.P. and increased in level with some fluctuation until they reached their modern levels 4,000-8,000 yr B.P. Evaporation (E), evapotranspiration (ET), and precipitation (P) were adjusted in a water-balance model to determine solutions that would maintain the lakes at reconstructed levels at key times in the past (12,500, 9,000 and 6,000 yr B.P.). Similar paleoclimatic solutions can be obtained for both basins for these times. Results indicate that P was 35-75% less than modern at 12,500 yr B.P., 25-45% less than modern at 9,000 yr B.P. and 10-20% less than modern at 6,000 yr B.P. Estimates for E and ET in the past were based on modern studies of vegetation types indicated by fossil pollen assemblages. Although interior Alaska is predominantly forested at the present, pollen analyses indicate tundra vegetation prior to about 12,000 yr B.P. The lakes show differing sensitivities to changing hydrologic parameters; sensitivity depends on the ratio of lake area (AL) to drainage basin (DA) size. This ratio also changed over time as lake level and lake area increased. Smaller AL to DA ratios make a lake more sensitive to ET, if all other factors are constant.
Global Change Biology | 2004
Martin Wilmking; Glenn P. Juday; Valerie A. Barber; Harold S.J. Zald
Journal of Paleolimnology | 2012
Bruce P. Finney; Nancy H. Bigelow; Valerie A. Barber; Mary E. Edwards
Archive | 1997
Glenn P. Juday; Robert A Ott; David W. Valentine; Valerie A. Barber
Archive | 2010
Pieter S. A. Beck; Glenn P. Juday; Scott J. Goetz; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Erich Vale e Sousa; Patrick Heiser; J. D. Herriges