Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerie Barbier is active.

Publication


Featured researches published by Valerie Barbier.


Blood | 2010

Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

Ingrid G. Winkler; Natalie A. Sims; Allison R. Pettit; Valerie Barbier; Bianca Nowlan; Falak Helwani; Ingrid J. Poulton; Nico van Rooijen; Kylie A. Alexander; Liza J. Raggatt; Jean-Pierre Levesque

In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.


Nature Medicine | 2012

Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance

Ingrid G. Winkler; Valerie Barbier; Bianca Nowlan; Rebecca Jacobsen; Catherine E. Forristal; John T. Patton; John L. Magnani; Jean-Pierre Levesque

The microenvironment, or niche, surrounding a stem cell largely governs its cellular fate. Two anatomical niches for hematopoietic stem cells (HSCs) have been reported in the bone marrow, but a distinct function for each of these niches remains unclear. Here we report a new role for the adhesion molecule E-selectin expressed exclusively by bone marrow endothelial cells in the vascular HSC niche. HSC quiescence was enhanced and self-renewal potential was increased in E-selectin knockout (Sele−/−) mice or after administration of an E-selectin antagonist, demonstrating that E-selectin promotes HSC proliferation and is a crucial component of the vascular niche. These effects are not mediated by canonical E-selectin ligands. Deletion or blockade of E-selectin enhances HSC survival threefold to sixfold after treatment of mice with chemotherapeutic agents or irradiation and accelerates blood neutrophil recovery. As bone marrow suppression is a severe side effect of high-dose chemotherapy, transient blockade of E-selectin is potentially a promising treatment for the protection of HSCs during chemotherapy or irradiation.


Blood | 2010

Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches

Ingrid G. Winkler; Valerie Barbier; Robert Wadley; Andrew C.W. Zannettino; Sharon A. Williams; Jean-Pierre Levesque

Hematopoietic stem cell (HSC) niches have been reported at the endosteum or adjacent to bone marrow (BM) vasculature. To investigate functional attributes of these niches, mice were perfused with Hoechst 33342 (Ho) in vivo before BM cell collection in presence of pump inhibitors and antibody stained. We report that the position of phenotypic HSCs, multipotent and myeloid progenitors relative to blood flow, follows a hierarchy reflecting differentiation stage, whereas mesenchymal stromal cells are perivascular. Furthermore, during granulocyte colony-stimulating factor-induced mobilization, HSCs migrated closer to blood flow, whereas stromal cells did not. Interestingly, phenotypic Lin(-)Sca1(+)KIT(+)CD41(-)CD48(-)CD150(+) HSCs segregated into 2 groups (Ho(neg) or Ho(med)), based on degree of blood/Ho perfusion of their niche. HSCs capable of serial transplantation and long-term bromodeoxyuridine label retention were enriched in Ho(neg) HSCs, whereas Ho(med) HSCs cycled more frequently and only reconstituted a single host. This suggests that the most potent HSC niches are enriched in locally secreted factors and low oxygen tension due to negligible blood flow. Importantly, blood perfusion of niches correlates better with HSC function than absolute distance from vasculature. This technique enables prospective isolation of serially reconstituting HSCs distinct from other less potent HSCs of the same phenotype, based on the in vivo niche in which they reside.


Stem Cells | 2007

Hematopoietic Progenitor Cell Mobilization Results in Hypoxia with Increased Hypoxia-Inducible Transcription Factor-1α and Vascular Endothelial Growth Factor A in Bone Marrow

Jean-Pierre Levesque; Ingrid G. Winkler; Jean Hendy; Brenda Williams; Falak Helwani; Valerie Barbier; Bianca Nowlan; Susan K. Nilsson

Despite the fact that many hypoxia‐inducible genes are important in hematopoiesis, the spatial distribution of oxygen in the bone marrow (BM) has not previously been explored in vivo. Using the hypoxia bioprobe pimonidazole, we showed by confocal laser scanning microscopy that the endosteum at the bone‐BM interface is hypoxic, with constitutive expression of hypoxia‐inducible transcription factor‐1α (HIF‐1α) protein in steady‐state mice. Interestingly, at the peak of hematopoietic stem and progenitor cell (HSPC) mobilization induced by either granulocyte colony‐stimulating factor or cyclophosphamide, hypoxic areas expand through the central BM. Furthermore, we found that HSPC mobilization leads to increased levels of HIF‐1α protein and increased expression of vascular endothelial growth factor A (VEGF‐A) mRNA throughout the BM, with an accumulation of VEGF‐A protein in BM endothelial sinuses. VEGF‐A is a cytokine known to induce stem cell mobilization, vasodilatation, and vascular permeability in vivo. We therefore propose that the expansion in myeloid progenitors that occurs during mobilization depletes the BM hematopoietic microenvironment of O2, leading to local hypoxia, stabilization of HIF‐1α transcription factor in BM cells, increased transcription of VEGF‐A, and accumulation of VEGF‐A protein on BM sinuses that increases vascular permeability.


Leukemia | 2012

Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation

Ingrid G. Winkler; Allison R. Pettit; Liza J. Raggatt; Rebecca Jacobsen; Catherine E. Forristal; Valerie Barbier; Bianca Nowlan; Adam Cisterne; Linda J. Bendall; Natalie A. Sims; J-P Lévesque

The CXCR4 antagonist AMD3100 is progressively replacing cyclophosphamide (CYP) as adjuvant to granulocyte colony-stimulating factor (G-CSF) to mobilize hematopoietic stem cells (HSC) for autologous transplants in patients who failed prior mobilization with G-CSF alone. It has recently emerged that G-CSF mediates HSC mobilization and inhibits bone formation via specific bone marrow (BM) macrophages. We compared the effect of these three mobilizing agents on BM macrophages, bone formation, osteoblasts, HSC niches and HSC reconstitution potential. Both G-CSF and CYP suppressed niche-supportive macrophages and osteoblasts, and inhibited expression of endosteal cytokines resulting in major impairment of HSC reconstitution potential remaining in the mobilized BM. In sharp contrast, although AMD3100 was effective at mobilizing HSC, it did not suppress osteoblasts, endosteal cytokine expression or reconstitution potential of HSC remaining in the mobilized BM. In conclusion, although G-CSF, CYP and AMD3100 efficiently mobilize HSC into the blood, their effects on HSC niches and bone formation are distinct with both G-CSF and CYP targeting HSC niche function and bone formation, whereas AMD3100 directly targets HSC without altering niche function or bone formation.


The Journal of Pathology | 2015

Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle.

F. Genet; I. Kulina; Cedryck Vaquette; Frédéric Torossian; Susan Millard; Allison R. Pettit; Natalie A. Sims; Adrienne Anginot; Bernadette Guerton; Ingrid G. Winkler; Valerie Barbier; Jean-Jacques Lataillade; Marie-Caroline Le Bousse-Kerdilès; Dietmar W. Hutmacher; Jean-Pierre Levesque

Neurological heterotopic ossification (NHO) is the abnormal formation of bone in soft tissues as a consequence of spinal cord or traumatic brain injury. NHO causes pain, ankyloses, vascular and nerve compression and delays rehabilitation in this high‐morbidity patient group. The pathological mechanisms leading to NHO remain unknown and consequently there are no therapeutic options to prevent or reduce NHO. Genetically modified mouse models of rare genetic forms of heterotopic ossification (HO) exist, but their relevance to NHO is questionable. Consequently, we developed the first model of spinal cord injury (SCI)‐induced NHO in genetically unmodified mice. Formation of NHO, measured by micro‐computed tomography, required the combination of both SCI and localized muscular inflammation. Our NHO model faithfully reproduced many clinical features of NHO in SCI patients and both human and mouse NHO tissues contained macrophages. Muscle‐derived mesenchymal progenitors underwent osteoblast differentiation in vitro in response to serum from NHO mice without additional exogenous osteogenic stimuli. Substance P was identified as a candidate NHO systemic neuropeptide, as it was significantly elevated in the serum of NHO patients. However, antagonism of substance P receptor in our NHO model only modestly reduced the volume of NHO. In contrast, ablation of phagocytic macrophages with clodronate‐loaded liposomes reduced the size of NHO by 90%, supporting the conclusion that NHO is highly dependent on inflammation and phagocytic macrophages in soft tissues. Overall, we have developed the first clinically relevant model of NHO and demonstrated that a combined insult of neurological injury and soft tissue inflammation drives NHO pathophysiology. Copyright


Blood | 2014

Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes

Diwakar R. Pattabiraman; Crystal McGirr; Konstantin Shakhbazov; Valerie Barbier; Keerthana Krishnan; Pamela Mukhopadhyay; Paula L. Hawthorne; A. E. O. Trezise; Jianmin Ding; Sean M. Grimmond; Peter Papathanasiou; Warren S. Alexander; Andrew C. Perkins; Jean-Pierre Levesque; Ingrid G. Winkler; Thomas J. Gonda

The MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, suggesting that MYB may be a therapeutic target in these diseases. However, realization of this potential requires a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis, and an approach for developing an effective therapeutic. We previously showed that the interaction of c-Myb with the coactivator CBP/p300 is essential for its transforming activity. Here, by using cells from Booreana mice which carry a mutant allele of c-Myb, we show that this interaction is essential for in vitro transformation by the myeloid leukemia oncogenes AML1-ETO, AML1-ETO9a, MLL-ENL, and MLL-AF9. We further show that unlike cells from wild-type mice, Booreana cells transduced with AML1-ETO9a or MLL-AF9 retroviruses fail to generate leukemia upon transplantation into irradiated recipients. Finally, we have begun to explore the molecular mechanisms underlying these observations by gene expression profiling. This identified several genes previously implicated in myeloid leukemogenesis and HSC function as being regulated in a c-Myb-p300-dependent manner. These data highlight the importance of the c-Myb-p300 interaction in myeloid leukemogenesis and suggest disruption of this interaction as a potential therapeutic strategy for acute myeloid leukemia.


PLOS ONE | 2010

Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) Regulates Hematopoiesis and Bone Formation In Vivo

Yi Shen; Ingrid G. Winkler; Valerie Barbier; Natalie A. Sims; Jean Hendy; Jean-Pierre Levesque

Background Tissue inhibitor of metalloproteinases-3 (TIMP-3) inhibits matrix metalloproteinases and membrane-bound sheddases. TIMP-3 is associated with the extracellular matrix and is expressed in highly remodeling tissues. TIMP-3 function in the hematopoietic system is unknown. Methodology/Principal Findings We now report that TIMP-3 is highly expressed in the endosteal region of the bone marrow (BM), particularly by osteoblasts, endothelial and multipotent mesenchymal stromal cells which are all important cellular components of hematopoietic stem cell (HSC) niches, whereas its expression is very low in mature leukocytes and hematopoietic stem and progenitor cells. A possible role of TIMP-3 as an important niche component was further suggested by its down-regulation during granulocyte colony-stimulating factor-induced mobilization. To further investigate TIMP-3 function, mouse HSC were retrovirally transduced with human TIMP-3 and transplanted into lethally irradiated recipients. TIMP-3 overexpression resulted in decreased frequency of B and T lymphocytes and increased frequency of myeloid cells in blood and BM, increased Lineage-negative Sca-1+KIT+ cell proliferation in vivo and in vitro and increased colony-forming cell trafficking to blood and spleen. Finally, over-expression of human TIMP-3 caused a late onset fatal osteosclerosis. Conclusions/Significance Our results suggest that TIMP-3 regulates HSC proliferation, differentiation and trafficking in vivo, as well as bone and bone turn-over, and that TIMP-3 is expressed by stromal cells forming HSC niches within the BM. Thus, TIMP-3 may be an important HSC niche component regulating both hematopoiesis and bone remodeling.


Experimental Hematology | 2014

Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse.

Rebecca Jacobsen; Catherine E. Forristal; Liza J. Raggatt; Bianca Nowlan; Valerie Barbier; Simranpreet Kaur; Nico van Rooijen; Ingrid G. Winkler; Allison R. Pettit; Jean-Pierre Levesque

Similarly to other tissues, the bone marrow contains subsets of resident tissue macrophages, which are essential to maintain bone formation, functional hematopoietic stem cell (HSC) niches, and erythropoiesis. Pharmacologic doses of granulocyte colony-stimulating factor (G-CSF) mobilize HSC in part by interfering with the HSC niche-supportive function of BM resident macrophages. Because bone marrow macrophages are key to both maintenance of HSC within their niche and erythropoiesis, we investigated the effect of mobilizing doses of G-CSF on erythropoiesis in mice. We now report that G-CSF blocks medullar erythropoiesis by depleting the erythroid island macrophages we identified as co-expressing F4/80, vascular cell adhesion molecule-1, CD169, Ly-6G, and the ER-HR3 erythroid island macrophage antigen. Both broad macrophage depletion, achieved by injecting clodronate-loaded liposomes, and selective depletion of CD169(+) macrophages, also concomitantly depleted F4/80(+)VCAM-1(+)CD169(+)ER-HR3(+)Ly-6G(+) erythroid island macrophages and blocked erythropoiesis. This more precise phenotypic definition of erythroid island macrophages will enable studies on their biology and function in normal settings and on diseases associated with anemia. Finally, this study further illustrates that macrophages are a potent relay of innate immunity and inflammation on bone, hematopoietic, and erythropoietic maintenance. Agents that affect these macrophages, such as G-CSF, are likely to affect these three processes concomitantly.


Haematologica | 2013

B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2

Ingrid G. Winkler; Linda J. Bendall; Catherine E. Forristal; Falak Helwani; Bianca Nowlan; Valerie Barbier; Yi Shen; Adam Cisterne; Lisa M. Sedger; Jean-Pierre Levesque

Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties.

Collaboration


Dive into the Valerie Barbier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bianca Nowlan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Magnani

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie A. Sims

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Falak Helwani

Translational Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge