Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerie Clerin is active.

Publication


Featured researches published by Valerie Clerin.


BMC Neuroscience | 2012

Inhibitors of cytosolic phospholipase A2

John C. McKew; Katherine L. Lee; Lihren Chen; Richard Vargas; James D. Clark; Cara Williams; Valerie Clerin; Suzana Marusic; Kevin Pong

BackgroundActivation of phospholipase A2 (PLA2) and the subsequent metabolism of arachidonic acid (AA) to prostaglandins have been shown to play an important role in neuronal death in neurodegenerative disease. Here we report the effects of the prion peptide fragment HuPrP106-126 on the PLA2 cascade in primary cortical neurons and translocation of cPLA2 to neurites.ResultsExposure of primary cortical neurons to HuPrP106-126 increased the levels of phosphorylated cPLA2 and caused phosphorylated cPLA2 to relocate from the cell body to the cellular neurite in a PrP-dependent manner, a previously unreported observation. HuPrP106-126 also induced significant AA release, an indicator of cPLA2 activation; this preceded synapse damage and subsequent cellular death. The novel translocation of p-cPLA2 postulated the potential for exposure to HuPrP106-126 to result in a re-arrangement of the cellular cytoskeleton. However p-cPLA2 did not colocalise significantly with F-actin, intermediate filaments, or microtubule-associated proteins. Conversely, p-cPLA2 did significantly colocalise with the cytoskeletal protein beta III tubulin. Pre-treatment with the PLA2 inhibitor, palmitoyl trifluoromethyl ketone (PACOCF3) reduced cPLA2 activation, AA release and damage to the neuronal synapse. Furthermore, PACOCF3 reduced expression of p-cPLA2 in neurites and inhibited colocalisation with beta III tubulin, resulting in protection against PrP-induced cell death.ConclusionsCollectively, these findings suggest that cPLA2 plays a vital role in the action of HuPrP106-126 and that the colocalisation of p-cPLA2 with beta III tubulin could be central to the progress of neurodegeneration caused by prion peptides. Further work is needed to define exactly how PLA2 inhibitors protect neurons from peptide-induced toxicity and how this relates to intracellular structural changes occurring in neurodegeneration.


Journal of Lipid Research | 2009

LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse

Elaine Quinet; Michael D Basso; Anita R Halpern; David W. Yates; Robert J. Steffan; Valerie Clerin; Christine Resmini; James C. Keith; Thomas J. Berrodin; Irene Feingold; Wenyan Zhong; Helen B. Hartman; Mark J. Evans; Stephen J. Gardell; Elizabeth DiBlasio-Smith; William Mounts; Edward R. Lavallie; Jay E. Wrobel; Ponnal Nambi; George P. Vlasuk

Liver X receptors (LXRs) are ligand-activated transcription factors that coordinate regulation of gene expression involved in several cellular functions but most notably cholesterol homeostasis encompassing cholesterol transport, catabolism, and absorption. WAY-252623 (LXR-623) is a highly selective and orally bioavailable synthetic modulator of LXR, which demonstrated efficacy for reducing lesion progression in the murine LDLR−/− atherosclerosis model with no associated increase in hepatic lipogenesis either in this model or Syrian hamsters. In nonhuman primates with normal lipid levels, WAY-252623 significantly reduced total (50–55%) and LDL-cholesterol (LDLc) (70–77%) in a time- and dose-dependent manner as well as increased expression of the target genes ABCA1/G1 in peripheral blood cells. Statistically significant decreases in LDLc were noted as early as day 7, reached a maximum by day 28, and exceeded reductions observed for simvastatin alone (20 mg/kg). Transient increases in circulating triglycerides and liver enzymes reverted to baseline levels over the course of the study. Complementary microarray analysis of duodenum and liver gene expression revealed differential activation of LXR target genes and suggested no direct activation of hepatic lipogenesis.


Nature Biotechnology | 2011

A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia

Lacramioara Ivanciu; Raffaella Toso; Paris Margaritis; Giulia Pavani; Haein Kim; Alexander Schlachterman; Jianhua Liu; Valerie Clerin; Debra D. Pittman; Rosalind Rose-Miranda; Kathleen M. Shields; David V. Erbe; James F. Tobin; Valder R. Arruda; Rodney M. Camire

Effective therapies are needed to control excessive bleeding in a range of clinical conditions. We improve hemostasis in vivo using a conformationally pliant variant of coagulation factor Xa (FXaI16L) rendered partially inactive by a defect in the transition from zymogen to active protease. Using mouse models of hemophilia, we show that FXaI16L has a longer half-life than wild-type FXa and does not cause excessive activation of coagulation. Once clotting mechanisms are activated to produce its cofactor FVa, FXaI16L is driven to the protease state and restores hemostasis in hemophilic animals upon vascular injury. Moreover, using human or murine analogs, we show that FXaI16L is more efficacious than FVIIa, which is used to treat bleeding in hemophilia inhibitor patients. FXaI16L may provide an effective strategy to enhance blood clot formation and act as a rapid pan-hemostatic agent for the treatment of bleeding conditions.Effective therapies are needed to control excessive bleeding in a range of clinical conditions. We describe a surprisingly useful approach to improve hemostasis in vivo using a variant of coagulation factor Xa (FXaI16L). This conformationally pliant derivative is partially inactive due to a defect in transitioning from zymogen to protease 1,2. Using mouse models of hemophilia, we show that FXaI16L has a prolonged half-life, relative to wild-type FXa and does not cause excessive activation of coagulation. Once clotting mechanisms are activated to produce its cofactor FVa, FXaI16L is driven to the protease state and restores hemostasis in hemophilic animals upon vascular injury. Moreover, using human or murine analogs, we show that FXaI16L is more efficacious than FVIIa which is used to treat bleeding in hemophilia inhibitor patients3. Because of its underlying mechanism of action, FXaI16L may provide an effective strategy to enhance blood clot formation and act as a rapid pan-hemostatic agent for the treatment of bleeding conditions.


Journal of Medicinal Chemistry | 2008

Indazole-based liver X receptor (LXR) modulators with maintained atherosclerotic lesion reduction activity but diminished stimulation of hepatic triglyceride synthesis.

Jay E. Wrobel; Robert J. Steffan; S. Marc Bowen; Ronald L. Magolda; Edward Martin Matelan; Rayomand J. Unwalla; Michael D Basso; Valerie Clerin; Stephen J. Gardell; Ponnal Nambi; Elaine Quinet; Jason I. Reminick; George P. Vlasuk; Shuguang Wang; Irene Feingold; Christine Huselton; Tomas Bonn; Mathias Färnegårdh; Tomas Hansson; Annika Goos Nilsson; Anna Wilhelmsson; Edouard Zamaratski; Mark J. Evans

A series of substituted 2-benzyl-3-aryl-7-trifluoromethylindazoles were prepared as LXR modulators. These compounds were partial agonists in transactivation assays when compared to 1 (T0901317) and were slightly weaker with respect to potency and efficacy on LXRalpha than on LXRbeta. Lead compounds in this series 12 (WAY-252623) and 13 (WAY-214950) showed less lipid accumulation in HepG2 cells than potent full agonists 1 and 3 (WAY-254011) but were comparable in efficacy to 1 and 3 with respect to cholesterol efflux in THP-1 foam cells, albeit weaker in potency. Compound 13 reduced aortic lesion area in LDLR knockout mice equivalently to 3 or positive control 2 (GW3965). In a 7-day hamster model, compound 13 showed a lesser propensity for plasma TG elevation than 3, when the compounds were compared at doses in which they elevated ABCA1 and ABCG1 gene expression in duodenum and liver at equal levels. In contrast to results previously published for 2, the lack of TG effect of 13 correlated with its inability to increase liver fatty acid synthase (FAS) gene expression, which was up-regulated 4-fold by 3. These results suggest indazoles such as 13 may have an improved profile for potential use as a therapeutic agent.


Atherosclerosis | 2008

Expression of the cysteine protease legumain in vascular lesions and functional implications in atherogenesis

Valerie Clerin; Heather H. Shih; Nanhua Deng; Gustave T. Hebert; Christine Resmini; Kathleen M. Shields; Jeffrey L. Feldman; Aaron Winkler; Leo M. Albert; Vasu Maganti; Anthony Wong; Janet E. Paulsen; James C. Keith; George P. Vlasuk; Debra D. Pittman

OBJECTIVE The present study was conducted to characterize the expression of the cysteine protease legumain in murine and human atherosclerotic tissues, and to explore the molecular mechanisms by which legumain may contribute to the pathophysiology of atherosclerosis. METHODS AND RESULTS Using microarray analysis, legumain mRNA expression was found to increase with development of atherosclerosis in the aorta of aging Apolipoprotein E deficient mice while expression remained at low level and unchanged in arteries of age-matched C57BL/6 control mice. In situ hybridization and immunohistochemical analysis determined that legumain was predominantly expressed by macrophages in the atherosclerotic aorta, in lesions at the aortic sinus and in injured carotid arteries of Apolipoprotein E deficient mice as well as in inflamed areas in advanced human coronary atherosclerotic plaques. In vitro, M-CSF differentiated human primary macrophages were shown to express legumain and the protein could also be detected in the culture media. When tested in migration assays, legumain induced chemotaxis of primary human monocytes and human umbilical vein endothelial cells. CONCLUSIONS Legumain is expressed in both murine and human atherosclerotic lesions. The macrophage-specific expression of legumain in vivo and ability of legumain to induce chemotaxis of monocytes and endothelial cells in vitro suggest that legumain may play a functional role in atherogenesis.


Journal of Pharmacology and Experimental Therapeutics | 2007

Characterization of the Novel P-Selectin Inhibitor PSI-697 [2-(4-Chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h] Quinoline-4-carboxylic acid] in Vitro and in Rodent Models of Vascular Inflammation and Thrombosis

Patricia W. Bedard; Valerie Clerin; Natalia Sushkova; Boris Tchernychev; Thomas M. Antrilli; Christine Resmini; James C. Keith; James K. Hennan; Neelu Kaila; Silvano DeBernardo; Kristin Janz; Qin Wang; David L. Crandall; Robert G. Schaub; Gray Shaw; Laura L. Carter

P-selectin plays a significant and well documented role in vascular disease by mediating leukocyte and platelet rolling and adhesion. This study characterizes the in vitro activity, pharmacokinetic properties, and the anti-inflammatory and antithrombotic efficacy of the orally active P-selectin small-molecule antagonist PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h] quinoline-4-carboxylic acid; molecular mass, 367.83]. Biacore and cell-based assays were used to demonstrate the ability of PSI-697 to dose dependently inhibit the binding of human P-selectin to human P-selectin glycoprotein ligand-1, inhibiting 50% of binding at 50 to 125 μM. The pharmacokinetics of PSI-697 in rats were characterized by low clearance, short half-life, low volume of distribution, and moderate apparent oral bioavailability. A surgical inflammation model, using exteriorized rat cremaster venules, demonstrated that PSI-697 (50 mg/kg p.o.) significantly reduced the number of rolling leukocytes by 39% (P < 0.05) versus vehicle control. In a rat venous thrombosis model, PSI-697 (100 mg/kg p.o.) reduced thrombus weight by 18% (P < 0.05) relative to vehicle, without prolonging bleeding time. Finally, in a rat carotid injury model, PSI-697 (30 or 15 mg/kg p.o.) administered 1 h before arterial injury and once daily thereafter for 13 days resulted in dose-dependent decreases in intima/media ratios of 40.2% (P = 0.025) and 25.7% (P = 0.002) compared with vehicle controls. These data demonstrate the activity of PSI-697 in vitro and after oral administration in animal models of both arterial and venous injury and support the clinical evaluation of this novel antagonist of P-selectin in atherothrombotic and venous thrombotic indications.


Journal of Medicinal Chemistry | 2010

Discovery of 2-[1-(4-Chlorophenyl)cyclopropyl]-3-hydroxy-8-(trifluoromethyl)quinoline-4-carboxylic Acid (PSI-421), a P-Selectin Inhibitor with Improved Pharmacokinetic Properties and Oral Efficacy in Models of Vascular Injury

Adrian Huang; Alessandro Moretto; Kristin Janz; Michael Dennis Lowe; Patricia W. Bedard; Steve Tam; Li Di; Valerie Clerin; Natalia Sushkova; Boris Tchernychev; Desiree H.H. Tsao; James C. Keith; Gray Shaw; Robert G. Schaub; Qin Wang; Neelu Kaila

Previously, we reported the discovery of PSI-697 (1a), a C-2 benzyl substituted quinoline salicylic acid-based P-selectin inhibitor. It is active in a variety of animal models of cardiovascular disease. Compound 1a has also been shown to be well tolerated and safe in healthy volunteers at doses of up to 1200 mg in a phase 1 single ascending dose study. However, its oral bioavailability was low. Our goal was to identify a back up compound with equal potency, increased solubility, and increased exposure. We expanded our structure-activity studies in this series by branching at the alpha position of the C-2 benzyl side chain and through modification of substituents on the carboxylic A-ring of the quinoline. This resulted in discovery of PSI-421 with marked improvement in aqueous solubility and pharmacokinetic properties. This compound has shown oral efficacy in animal models of arterial and venous injury and was selected as a preclinical development compound for potential treatment of such diseases as atherosclerosis and deep vein thrombosis.


ACS Medicinal Chemistry Letters | 2018

Discovery of Orally Bioavailable Selective Inhibitors of the Sodium-Phosphate Cotransporter NaPi2a (SLC34A1)

Kevin J. Filipski; Matthew F. Sammons; Samit Kumar Bhattacharya; Jane Panteleev; Janice A. Brown; Paula M. Loria; Markus Boehm; Aaron Smith; Andre Shavnya; Edward L. Conn; Kun Song; Yan Weng; Carie Facemire; Harald Jüppner; Valerie Clerin

Sodium-phosphate cotransporter 2a, or NaPi2a (SLC34A1), is a solute-carrier (SLC) transporter located in the kidney proximal tubule that reabsorbs glomerular-filtered phosphate. Inhibition of NaPi2a may enhance urinary phosphate excretion and correct maladaptive mineral and hormonal derangements associated with increased cardiovascular risk in chronic kidney disease-mineral and bone disorder (CKD-MBD). To date, only nonselective NaPi inhibitors have been described. Herein, we detail the discovery of the first series of selective NaPi2a inhibitors, resulting from optimization of a high-throughput screening hit. The oral PK profile of inhibitor PF-06869206 (6f) in rodents allows for the exploration of the pharmacology of selective NaPi2a inhibition.


Journal of Medicinal Chemistry | 2018

Discovery of a Novel Small Molecule Modulator of C-X-C Chemokine Receptor Type 7 as a Treatment for Cardiac Fibrosis

Elnaz Menhaji-Klotz; Kevin D. Hesp; Allyn T. Londregan; Amit S. Kalgutkar; David W. Piotrowski; Markus Boehm; Kun Song; Tim Ryder; Kevin Beaumont; Rhys M. Jones; Karen Atkinson; Janice A. Brown; John Litchfield; Jun Xiao; Daniel Canterbury; Kristen Burford; Benjamin A. Thuma; Chris Limberakis; Wenhua Jiao; Scott W. Bagley; Saket Agarwal; Danielle Crowell; Stephen Pazdziorko; Jessica Ward; David A. Price; Valerie Clerin

C-X-C chemokine receptor type 7 (CXCR7) is involved in cardiac and immune pathophysiology. We report the discovery of a novel 1,4-diazepine CXCR7 modulator, demonstrating for the first time the role of pharmacological CXCR7 intervention in cardiac repair. Structure-activity-relationship (SAR) studies demonstrated that a net reduction in lipophilicity (log D) and an incorporation of saturated ring systems yielded compounds with good CXCR7 potencies and improvements in oxidative metabolic stability in human-liver microsomes (HLM). Tethering an ethylene amide further improved the selectivity profile (e.g., for compound 18, CXCR7 Ki = 13 nM, adrenergic α 1a Kb > 10 000 nM, and adrenergic β 2 Kb > 10 000 nM). The subcutaneous administration of 18 in mice led to a statistically significant increase in circulating concentrations of plasma stromal-cell-derived factor 1α (SDF-1α) of approximately 2-fold. Chronic dosing of compound 18 in a mouse model of isoproterenol-induced cardiac injury further resulted in a statistically significant reduction of cardiac fibrosis.


Journal of Medicinal Chemistry | 2007

2-(4-Chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[H]quinoline-4-carboxylic Acid (PSI-697): Identification of a Clinical Candidate from the Quinoline Salicylic Acid Series of P-Selectin Antagonists

Neelu Kaila; Kristin Janz; Adrian Huang; Alessandro Moretto; Silvano DeBernardo; Patricia W. Bedard; Steve Tam; Valerie Clerin; James C. Keith; Desiree H.H. Tsao; Natalia Sushkova; Gray Shaw; Raymond T. Camphausen; and Robert G. Schaub; Qin Wang

Collaboration


Dive into the Valerie Clerin's collaboration.

Top Co-Authors

Avatar

John C. McKew

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ponnal Nambi

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge