Valerie Dubost
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valerie Dubost.
Toxicological Sciences | 2013
Harri Lempiäinen; Philippe Couttet; Federico Bolognani; Arne Müller; Valerie Dubost; Raphaëlle Luisier; Alberto del Rio-Espinola; Veronique Vitry; Elif B. Unterberger; John P. Thomson; Fridolin Treindl; Ute Metzger; Clemens Wrzodek; Florian Hahne; Tulipan Zollinger; Sarah Brasa; Magdalena Kalteis; M. Marcellin; Fanny Giudicelli; Albert Braeuning; Laurent Morawiec; Natasa Zamurovic; Ulrich Längle; Nico Scheer; Dirk Schübeler; Jay I. Goodman; Salah-Dine Chibout; Jennifer Marlowe; Diethilde Theil; David J. Heard
The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.
PLOS ONE | 2013
Caterina Vacchi-Suzzi; Florian Hahne; Philippe Scheubel; M. Marcellin; Valerie Dubost; Magdalena Westphal; Catherine Boeglen; Stine Büchmann-Møller; Ming Sin Cheung; André Cordier; Christopher De Benedetto; Mark Deurinck; Moritz Frei; Pierre Moulin; Olivier Grenet; Armelle Grevot; Robert Stull; Diethilde Theil; Jonathan G. Moggs; Estelle Marrer; Philippe Couttet
MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.
Toxicological Sciences | 2014
Raphaëlle Luisier; Harri Lempiäinen; Nina Scherbichler; Albert Braeuning; Miriam Geissler; Valerie Dubost; Arne Müller; Nico Scheer; Salah-Dine Chibout; Hisanori Hara; Frank Picard; Diethilde Theil; Philippe Couttet; Antonio Vitobello; Olivier Grenet; Bettina Grasl-Kraupp; Heidrun Ellinger-Ziegelbauer; John P. Thomson; Richard R. Meehan; Clifford R. Elcombe; Colin J. Henderson; C. Roland Wolf; Michael Schwarz; Pierre Moulin; Rémi Terranova; Jonathan G. Moggs
The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.
Developmental Biology | 2014
Bernd Kinzel; Monika Pikiolek; Vanessa Orsini; Joëlle Sprunger; Andrea Isken; Svenja Zietzling; Magali Desplanches; Valerie Dubost; Daniel Breustedt; Reginald Valdez; Dong Liu; Diethilde Theil; Matthias Müller; Bill Dietrich; Tewis Bouwmeester; Heinz Ruffner; Jan S. Tchorz
Lgr4 and Lgr5 are known markers of adult and embryonic tissue stem cells in various organs. However, whether Lgr4 and Lgr5 are important for embryonic development remains unclear. To study their functions during intestinal crypt, skin and kidney development we now generated mice lacking either Lgr4 (Lgr4KO), Lgr5 (Lgr5KO) or both receptors (Lgr4/5dKO). E16.5 Lgr4KO mice displayed complete loss of Lgr5+/Olfm4+intestinal stem cells, compromised Wnt signaling and impaired proliferation and differentiation of gut epithelium. Similarly, E16.5 Lgr4KO mice showed reduced basal cell proliferation and hair follicle numbers in the developing skin, as well as dilated kidney tubules and ectatic Bowman׳s spaces. Although Lgr4KO and Lgr5KO mice both died perinatally, Lgr5 deletion did not compromise embryonic development of gut, kidney or skin. Concomitant deletion of Lgr4 and Lgr5 did not prevent perinatal lethality, in contrast to a previous report that suggested rescue of Lgr5 KO perinatal lethality by a hypomorphic Lgr4 mutant. While the double deletion did not further promote the phenotypes observed in Lgr4KO intestines, impaired kidney cell proliferation, reduced epidermal thickness, loss of Lgr5+follicular epithelium and impaired hair follicle development were only observed in Lgr4/5dKO mice. This supports complementary functions of both receptors. Our findings clearly establish the importance of Lgr4 and Lgr5 during embryonic gut, skin and kidney development, with a dominant role of Lgr4.
Toxicologic Pathology | 2014
Peter Hoffmann; Phil Bentley; Pritam S. Sahota; Heidi A. Schoenfeld; Lori Martin; Linda Longo; Robert H. Spaet; Pierre Moulin; Serafino Pantano; Valerie Dubost; Dan Lapadula; Bryan Burkey; Virendar Kaushik; Wei Zhou; Michael Hayes; Nick Flavahan; Salah Dine Chibout; Steve Busch
The purpose of this article is to characterize skin lesions in cynomolgus monkeys following vildagliptin (dipeptidyl peptidase-4 inhibitor) treatment. Oral vildagliptin administration caused dose-dependent and reversible blister formation, peeling and flaking skin, erosions, ulcerations, scabs, and sores involving the extremities at ≥5 mg/kg/day and necrosis of the tail and the pinnae at ≥80 mg/kg/day after 3 weeks of treatment. At the affected sites, the media and the endothelium of dermal arterioles showed hypertrophy/hyperplasia. Skin lesion formation was prevented by elevating ambient temperature. Vildagliptin treatment also produced an increase in blood pressure and heart rate likely via increased sympathetic tone. Following treatment with vildagliptin at 80 mg/kg/day, the recovery time after lowering the temperature in the feet of monkeys and inducing cold stress was prolonged. Ex vivo investigations showed that small digital arteries from skin biopsies of vildagliptin-treated monkeys exhibited an increase in neuropeptide Y–induced vasoconstriction. This finding correlated with a specific increase in NPY and in NPY1 receptors observed in the skin of vildagliptin-treated monkeys. Present data provide evidence that skin effects in monkeys are of vascular origin and that the effects on the NPY system in combination with increased peripheral sympathetic tone play an important pathomechanistic role in the pathogenesis of cutaneous toxicity.
Toxicological Sciences | 2017
Marianne Uteng; Andreas Mahl; Nicolau Beckmann; Alessandro Piaia; David Ledieu; Valerie Dubost; Elaine Tritto; Armin Wolf; Pierre Moulin; Li Li; Salah-Dine Chibout; Francois Pognan
The aim of this study was to determine the relative safety of 4 antiviral drugs (telbivudine, tenofovir, adefovir, and entecavir) against hepatitis B virus with respect to kidney function and toxicity in male Sprague Dawley rats. The antiviral drugs were administered once daily for 4 weeks by oral gavage at ∼10 and 25–40 times the human equivalent dose. Main assessments included markers of renal toxicity in urine, magnetic resonance imaging (MRI) of kidney function, histopathology, and electron microscopic examination. Administration of adefovir at 11 and 28 mg/kg for 4 weeks caused functional and morphological kidney alterations in a time- and dose-dependent manner, affecting mainly the proximal tubules and suggesting a mechanism of toxicity related to mitochondrial degeneration/depletion. Of note, the observed adefovir-induced reduction of kidney function was not detected by the standard method of glomerular filtration rate (GFR) measurements (clearance rate of the endogenous marker, creatinine), thereby emphasizing the superiority of MRI in terms of sensitive detection of GFR in rats. For the low dose of 300 mg/kg of tenofovir, minor kidney effects such as nuclear enlargement in the tubular epithelium, and hyaline droplets accumulation were detected, which was also observed for the low dose (11 mg/kg) of adefovir. No assessments could be done at the higher dose of 600/1000 mg/kg tenofovir due to gastrointestinal tract toxicity which prevented treatment of the animals for longer than 1 week. Entecavir at 1 and 3 mg/kg and telbivudine at 600 and 1600 mg/kg caused no toxicologically relevant effects on the kidney.
Journal of Neuroimmunology | 2018
Paul Smith; Cindy Schmid; Stefan Zurbruegg; Magali Jivkov; Arno Doelemeyer; Diethilde Theil; Valerie Dubost; Nicolau Beckmann
Longitudinal brain atrophy quantification is a critical efficacy measurement in multiple sclerosis (MS) clinical trials and the determination of No Evidence of Disease Activity (NEDA). Utilising fingolimod as a clinically validated therapy we evaluated the use of repeated brain tissue volume measures during chronic experimental autoimmune encephalomyelitis (EAE) as a new preclinical efficacy measure. Brain volume changes were quantified using magnetic resonance imaging (MRI) at 7 Tesla and correlated to treatment-induced brain derived neurotrophic factor (BDNF) measured in blood, cerebrospinal fluid, spinal cord and brain. Serial brain MRI measurements revealed slow progressive brain volume loss in vehicle treated EAE mice despite a stable clinical score. Fingolimod (1 mg/kg) significantly ameliorated brain tissue atrophy in the cerebellum and striatum when administered from established EAE disease onwards. Fingolimod-dependent tissue preservation was associated with induction of BDNF specifically within the brain and co-localized with neuronal soma. In contrast, therapeutic teriflunomide (3 mg/kg) treatment failed to inhibit CNS autoimmune mediated brain degeneration. Finally, weekly anti-IL-17A antibody (15 mg/kg) treatment was highly efficacious and preserved whole brain, cerebellum and striatum volume. Fingolimod-mediated BDNF increases within the CNS may contribute to limiting progressive tissue loss during chronic neuroinflammation.
Toxicological Sciences | 2017
Lucie Pouché; Antonio Vitobello; Michael Römer; Milica Glogovac; A. Kenneth MacLeod; Heidrun Ellinger-Ziegelbauer; Magdalena Westphal; Valerie Dubost; Daniel P. Stiehl; Berengere Dumotier; Alexander Fekete; Pierre Moulin; Andreas Zell; Michael Schwarz; Rita Moreno; Jeffrey T.-J. Huang; Cliff Elcombe; Colin J. Henderson; C. Roland Wolf; Jonathan G. Moggs; Rémi Terranova
Derisking xenobiotic-induced nongenotoxic carcinogenesis (NGC) represents a significant challenge during the safety assessment of chemicals and therapeutic drugs. The identification of robust mechanism-based NGC biomarkers has the potential to enhance cancer hazard identification. We previously demonstrated Constitutive Androstane Receptor (CAR) and WNT signaling-dependent up-regulation of the pluripotency associated Dlk1-Dio3 imprinted gene cluster noncoding RNAs (ncRNAs) in the liver of mice treated with tumor-promoting doses of phenobarbital (PB). Here, we have compared phenotypic, transcriptional ,and proteomic data from wild-type, CAR/PXR double knock-out and CAR/PXR double humanized mice treated with either PB or chlordane, and show that hepatic Dlk1-Dio3 locus long ncRNAs are upregulated in a CAR/PXR-dependent manner by two structurally distinct CAR activators. We further explored the specificity of Dlk1-Dio3 locus ncRNAs as hepatic NGC biomarkers in mice treated with additional compounds working through distinct NGC modes of action. We propose that up-regulation of Dlk1-Dio3 cluster ncRNAs can serve as an early biomarker for CAR activator-induced nongenotoxic hepatocarcinogenesis and thus may contribute to mechanism-based assessments of carcinogenicity risk for chemicals and novel therapeutics.
Journal of Molecular Histology | 2013
Serafino Pantano; Valerie Dubost; Katy Darribat; Philippe Couttet; Olivier Grenet; Steven Busch; Pierre Moulin
Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression in human skin was described mainly in dermal fibroblasts and a subset of keratinocytes in the basal layer. Of importance in the perspective of preclinical experimentation, DPP4 distribution in skin of non-human primate species has not been documented. This report evidences unexpected differences between a set of human and cynomolgus monkey skin samples revealing a major expression of DPP4 in eccrine sweat glands of cynomolgus monkeys but not in humans. This represents a unique distinctive feature compared to the conserved expression of dipeptidyl peptidases 8 and 9 and potential relevant DPP4 substrates such as neuropeptide Y (NPY) and receptors (NPY-receptor 1 and Neurokinin receptor). Finally the observation that cathepsin D, an unrelated protease, shows the opposite expression compared to DPP4 (present in human but not in cynomolgus monkey eccrine sweat glands) could indicate that human eccrine sweat glands evolved a divergent protease repertoire compared to non-human primates. These unexpected differences in the eccrine sweat glands protease repertoire will need to be confirmed extending the analysis to a major number of donors but could imply possible biochemical divergences, reflecting the functional evolution of the glands and the control of their activity. Our findings also demonstrate that non-human primates studies aiming at understanding DPP4 function in skin biology are not readily translatable to human.
Embo Molecular Medicine | 2018
Ulf Neumann; Mike Ufer; Laura H. Jacobson; Marie-Laure Rouzade-Dominguez; Gunilla Huledal; Carine Kolly; Rainer Lüönd; Rainer Machauer; Siem Jacob Veenstra; Konstanze Hurth; Heinrich Rueeger; Marina Tintelnot-Blomley; Matthias Staufenbiel; Derya R. Shimshek; Ludovic Perrot; Wilfried Frieauff; Valerie Dubost; Hilmar Schiller; Barbara Vogg; Karen Beltz; Alexandre Avrameas; Sandrine Kretz; Nicole Pezous; Jean-Michel Rondeau; Nicolau Beckmann; Andreas Hartmann; Stefan Viktor Vormfelde; Olivier David; Bruno Galli; Rita Ramos
The beta‐site amyloid precursor protein cleaving enzyme‐1 (BACE‐1) initiates the generation of amyloid‐β (Aβ), and the amyloid cascade leading to amyloid plaque deposition, neurodegeneration, and dementia in Alzheimers disease (AD). Clinical failures of anti‐Aβ therapies in dementia stages suggest that treatment has to start in the early, asymptomatic disease states. The BACE‐1 inhibitor CNP520 has a selectivity, pharmacodynamics, and distribution profile suitable for AD prevention studies. CNP520 reduced brain and cerebrospinal fluid (CSF) Aβ in rats and dogs, and Aβ plaque deposition in APP‐transgenic mice. Animal toxicology studies of CNP520 demonstrated sufficient safety margins, with no signs of hair depigmentation, retina degeneration, liver toxicity, or cardiovascular effects. In healthy adults ≥ 60 years old, treatment with CNP520 was safe and well tolerated and resulted in robust and dose‐dependent Aβ reduction in the cerebrospinal fluid. Thus, long‐term, pivotal studies with CNP520 have been initiated in the Generation Program.