Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerie Fillon is active.

Publication


Featured researches published by Valerie Fillon.


Genetics | 2004

Molecular Cytogenetic Definition of the Chicken Genome: The First Complete Avian Karyotype

Julio S. Masabanda; David W. Burt; Patricia C. M. O'Brien; Alain Vignal; Valerie Fillon; Philippa S. Walsh; Helen Cox; Helen G. Tempest; Jacqueline Smith; Felix A. Habermann; Yoichi Matsuda; Malcolm A. Ferguson-Smith; Richard P.M.A. Crooijmans; M.A.M. Groenen; Darren K. Griffin

Chicken genome mapping is important for a range of scientific disciplines. The ability to distinguish chromosomes of the chicken and other birds is thus a priority. Here we describe the molecular cytogenetic characterization of each chicken chromosome using chromosome painting and mapping of individual clones by FISH. Where possible, we have assigned the chromosomes to known linkage groups. We propose, on the basis of size, that the NOR chromosome is approximately the size of chromosome 22; however, we suggest that its original assignment of 16 should be retained. We also suggest a definitive chromosome classification system and propose that the probes developed here will find wide utility in the fields of developmental biology, DT40 studies, agriculture, vertebrate genome organization, and comparative mapping of avian species.


BMC Genomics | 2008

Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

Darren K. Griffin; Lindsay Robertson; Helen G. Tempest; Alain Vignal; Valerie Fillon; Richard P.M.A. Crooijmans; M.A.M. Groenen; Svetlana Deryusheva; Elena Gaginskaya; Wilfrid Carre; D. Waddington; Richard Talbot; Martin Völker; Julio S. Masabanda; Dave Burt

BackgroundComparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds.ResultsWe present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs.ConclusionThis is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents.


BMC Genomics | 2006

Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence

Boniface B. Kayang; Valerie Fillon; Miho Inoue-Murayama; Mitsuru Miwa; Sophie Leroux; Katia Feve; J. L. Monvoisin; Frédérique Pitel; Matthieu Vignoles; Céline Mouilhayrat; Catherine Beaumont; Shin-ichi Ito; Francis Minvielle; Alain Vignal

BackgroundBy comparing the quail genome with that of chicken, chromosome rearrangements that have occurred in these two galliform species over 35 million years of evolution can be detected. From a more practical point of view, the definition of conserved syntenies helps to predict the position of genes in quail, based on information taken from the chicken sequence, thus enhancing the utility of this species in biological studies through a better knowledge of its genome structure. A microsatellite and an Amplified Fragment Length Polymorphism (AFLP) genetic map were previously published for quail, as well as comparative cytogenetic data with chicken for macrochromosomes. Quail genomics will benefit from the extension and the integration of these maps.ResultsThe integrated linkage map presented here is based on segregation analysis of both anonymous markers and functional gene loci in 1,050 quail from three independent F2 populations. Ninety-two loci are resolved into 14 autosomal linkage groups and a Z chromosome-specific linkage group, aligned with the quail AFLP map. The size of linkage groups ranges from 7.8 cM to 274.8 cM. The total map distance covers 904.3 cM with an average spacing of 9.7 cM between loci. The coverage is not complete, as macrochromosome CJA08, the gonosome CJAW and 23 microchromosomes have no marker assigned yet. Significant sequence identities of quail markers with chicken enabled the alignment of the quail linkage groups on the chicken genome sequence assembly. This, together with interspecific Fluorescence In Situ Hybridization (FISH), revealed very high similarities in marker order between the two species for the eight macrochromosomes and the 14 microchromosomes studied.ConclusionIntegrating the two microsatellite and the AFLP quail genetic maps greatly enhances the quality of the resulting information and will thus facilitate the identification of Quantitative Trait Loci (QTL). The alignment with the chicken chromosomes confirms the high conservation of gene order that was expected between the two species for macrochromosomes. By extending the comparative study to the microchromosomes, we suggest that a wealth of information can be mined in chicken, to be used for genome analyses in quail.


Genetics Selection Evolution | 2002

ChickRH6: a chicken whole-genome radiation hybrid panel

Mireille Morisson; Alexandre Lemière; Sarah Bosc; Maxime Galan; Florence Plisson-Petit; Philippe Pinton; Chantal Delcros; Katia Feve; Frédérique Pitel; Valerie Fillon; M. Yerle; Alain Vignal

As a first step towards the development of radiation hybrid maps, we have produced a radiation hybrid panel in the chicken by fusing female embryonic diploid fibroblasts irradiated at 6 000 rads with HPRT-deficient hamster Wg3hCl2 cells. Due to the low retention frequency of the chicken fragments, a high number of clones was produced from which the best ones were selected. Thus, 452 fusion clones were tested for retention frequencies with a panel of 46 markers. Based on these results, 103 clones with a mean marker retention of 23.8% were selected for large scale culture to produce DNA in sufficient quantities for the genotyping of numerous markers. Retention frequency was tested again with the same 46 markers and the 90 best clones, with a final mean retention frequency of 21.9%, were selected for the final panel. This panel will be a valuable resource for fine mapping of markers and genes in the chicken, and will also help in building BAC contigs.


PLOS Genetics | 2012

The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility

Freyja Imsland; Chungang Feng; Henrik Boije; Bertrand Bed'Hom; Valerie Fillon; Ben Dorshorst; Carl-Johan Rubin; Ranran Liu; Yu Gao; Xiaorong Gu; Yanqiang Wang; David Gourichon; Michael C. Zody; William Zecchin; Agathe Vieaud; Michèle Tixier-Boichard; Xiaoxiang Hu; Finn Hallböök; Ning Li; Leif Andersson

Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution.


Cytogenetic and Genome Research | 1996

Mapping of the genetically independent chicken major histocompatibility complexes B@ and RFP-Y@ to the same microchromosome by two-color fluorescent in situ hybridization

Valerie Fillon; Rima Zoorob; M. Yerle; Charles Auffray; Alain Vignal

The chicken MHC is organized in two genetically independent gene complexes B@ and RFP-Y@. Previous studies have shown the localization of the B@ complex on a small microchromosome. By using two-color fluorescent in situ hybridization, we demonstrate the localization of the RFP-Y@ complex to the same chromosome. A recombination hot spot between the two loci might account for their independent segregation.


G3: Genes, Genomes, Genetics | 2017

A New Chicken Genome Assembly Provides Insight into Avian Genome Structure

Wesley C. Warren; LaDeana W. Hillier; Chad Tomlinson; Patrick Minx; Milinn Kremitzki; Tina Graves; Chris Markovic; Nathan Bouk; Kim D. Pruitt; Françoise Thibaud-Nissen; Valerie Schneider; Tamer Mansour; C. Titus Brown; Aleksey V. Zimin; R. J. Hawken; Mitch Abrahamsen; Alexis B. Pyrkosz; Mireille Morisson; Valerie Fillon; Alain Vignal; William Chow; Kerstin Howe; Janet E. Fulton; Marcia M. Miller; Peter V. Lovell; Claudio V. Mello; Morgan Wirthlin; Andrew S. Mason; Richard Kuo; David W. Burt

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Genetica | 2006

Fish on avian lampbrush chromosomes produces higher resolution gene mapping

Svetlana Galkina; Svetlana Deryusheva; Valerie Fillon; Alain Vignal; R.P.M.A. Crooijmans; Martin Groenen; Alexander V. Rodionov; Elena Gaginskaya

Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.


BMC Genomics | 2010

Integrative mapping analysis of chicken microchromosome 16 organization

Romain Solinhac; Sophie Leroux; Svetlana Galkina; Olympe Chazara; Katia Feve; Florence Vignoles; Mireille Morisson; Svetlana Derjusheva; Bertrand Bed'Hom; Alain Vignal; Valerie Fillon; Frédérique Pitel

BackgroundThe chicken karyotype is composed of 39 chromosome pairs, of which 9 still remain totally absent from the current genome sequence assembly, despite international efforts towards complete coverage. Some others are only very partially sequenced, amongst which microchromosome 16 (GGA16), particularly under-represented, with only 433 kb assembled for a full estimated size of 9 to 11 Mb. Besides the obvious need of full genome coverage with genetic markers for QTL (Quantitative Trait Loci) mapping and major genes identification studies, there is a major interest in the detailed study of this chromosome because it carries the two genetically independent MHC complexes B and Y. In addition, GGA16 carries the ribosomal RNA (rRNA) genes cluster, also known as the NOR (nucleolus organizer region). The purpose of the present study is to construct and present high resolution integrated maps of GGA16 to refine its organization and improve its coverage with genetic markers.ResultsWe developed 79 STS (Sequence Tagged Site) markers to build a physical RH (radiation hybrid) map and 34 genetic markers to extend the genetic map of GGA16. We screened a BAC (Bacterial Artificial Chromosome) library with markers for the MHC-B, MHC-Y and rRNA complexes. Selected clones were used to perform high resolution FISH (Fluorescent In Situ Hybridization) mapping on giant meiotic lampbrush chromosomes, allowing meiotic mapping in addition to the confirmation of the order of the three clusters along the chromosome. A region with high recombination rates and containing PO41 repeated elements separates the two MHC complexes.ConclusionsThe three complementary mapping strategies used refine greatly our knowledge of chicken microchromosome 16 organisation. The characterisation of the recombination hotspots separating the two MHC complexes demonstrates the presence of PO41 repetitive sequences both in tandem and inverted orientation. However, this region still needs to be studied in more detail.


Cytogenetic and Genome Research | 2007

The chicken RH map: current state of progress and microchromosome mapping.

Mireille Morisson; M. Denis; David J. Milan; Christophe Klopp; Sophie Leroux; Suzanne Bardes; Frédérique Pitel; Florence Vignoles; M. Gérus; Valerie Fillon; Marine Douaud; Alain Vignal

The ChickRH6 radiation hybrid panel has been used to construct consensus chromosome radiation hybrid (RH) maps of the chicken genome. Markers genotyped were either from throughout the genome or targeted to specific chromosomes and a large proportion (one third) of data was the result of collaborative efforts. Altogether, 2,531 markers were genotyped, allowing the construction of RH reference maps for 20 chromosomes and linkage groups for four other chromosomes. Amongst the markers, 581 belong to the framework maps, while 1,721 are on the comprehensive maps. Around 800 markers still have to be assigned to linkage groups. Our attempt to assign the supercontigs from the chrun (virtual chromosome containing all the genome sequence that could not be attributed to a chromosome) as well as EST (Expressed Sequence Tag) contigs that do not have a BLAST hit in the genome assembly led to the construction of new maps for microchromosomes either absent or for which very little data is present in the genome assembly. RH data is presented through our ChickRH webserver (http://chickrh.toulouse.inra.fr/), which is a mapping tool as well as the official repository RH database for genotypes. It also displays the RH reference maps and comparison charts with the sequence thus highlighting the possible discrepancies. Future improvements of the RH maps include complete coverage of the sequence assigned to chromosomes, further mapping of the chrun and mapping of EST contigs absent from the assembly. This will help finish the mapping of the smallest gene-rich microchromosomes.

Collaboration


Dive into the Valerie Fillon's collaboration.

Top Co-Authors

Avatar

Alain Vignal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédérique Pitel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mireille Morisson

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M.A.M. Groenen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katia Feve

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard P.M.A. Crooijmans

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Svetlana Galkina

Saint Petersburg State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge