Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerie Guss is active.

Publication


Featured researches published by Valerie Guss.


Journal of Pharmacology and Experimental Therapeutics | 2004

Dynamics of β-Amyloid Reductions in Brain, Cerebrospinal Fluid, and Plasma of β-Amyloid Precursor Protein Transgenic Mice Treated with a γ-Secretase Inhibitor

Donna M. Barten; Valerie Guss; Jason A. Corsa; Alice T. Loo; Steven Hansel; Ming Zheng; Benito Munoz; Kumar Srinivasan; Bowei Wang; Barbara J. Robertson; Craig Polson; Jian Wang; Susan B. Roberts; Joseph P. Hendrick; Jeffery J. Anderson; James Loy; Rex Denton; Todd A Verdoorn; David W. Smith; Kevin M. Felsenstein

γ-Secretase inhibitors are one promising approach to the development of a therapeutic for Alzheimers disease (AD). γ-Secretase inhibitors reduce brain β-amyloid peptide (Aβ), which is believed to be a major contributor in the etiology of AD. Transgenic mice overexpressing the human β-amyloid precursor protein (APP) are valuable models to examine the dynamics of Aβ changes with γ-secretase inhibitors in plaque-free and plaque-bearing animals. BMS-299897 2-[(1R)-1-[[(4-chlorophenyl)sulfony](2,5-difluorophenyl)amino]ethyl]-5-fluorobenzenepropanoic acid, a γ-secretase inhibitor, showed dose- and time dependent reductions of Aβ in brain, cerebrospinal fluid (CSF), and plasma in young transgenic mice, with a significant correlation between brain and CSF Aβ levels. Because CSF and brain interstitial fluid are distinct compartments in composition and location, this correlation could not be assumed. In contrast, aged transgenic mice with large accumulations of Aβ in plaques showed reductions in CSF Aβ in the absence of measurable changes in plaque Aβ in the brain after up to 2 weeks of treatment. Hence, CSF Aβ levels were a valuable measure of γ-secretase activity in the central nervous system in either the presence or absence of plaques. Transgenic mice were also used to examine potential side effects due to Notch inhibition. BMS-299897 was 15-fold more effective at preventing the cleavage of APP than of Notch in vitro. No changes in the maturation of CD8+ thymocytes or of intestinal goblet cells were observed in mice treated with BMS-299897, showing that it is possible for γ-secretase inhibitors to reduce brain Aβ without causing Notch-mediated toxicity.


PLOS ONE | 2013

Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease

Jere E. Meredith; Sethu Sankaranarayanan; Valerie Guss; Anthony Lanzetti; Flora Berisha; Robert Neely; J. Randall Slemmon; Erik Portelius; Henrik Zetterberg; Kaj Blennow; Holly Soares; Michael K. Ahlijanian; Charles F. Albright

Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.


Journal of Alzheimer's Disease | 2011

Tau Transgenic Mice as Models for Cerebrospinal Fluid Tau Biomarkers

Donna M. Barten; Gregory W. Cadelina; Nina Hoque; Lynn B. DeCarr; Valerie Guss; Ling Yang; Sethu Sankaranarayanan; Paul D. Wes; Marianne E. Flynn; Jere E. Meredith; Michael K. Ahlijanian; Charles F. Albright

Levels of tau in cerebrospinal fluid (CSF) are elevated in Alzheimers disease (AD) patients. It is believed this elevation is related to the tau pathology and neurodegeneration observed in AD, but not all tauopathies have increased CSF tau. There has been little pre-clinical work to investigate mechanisms of increased CSF tau due to the difficulty in collecting CSF samples from mice, the most commonly used pre-clinical models. We developed methods to collect CSF from mice without contamination from tau in brain tissue, which is approximately 50,000 fold more abundant in brain than CSF. Using these methods, we measured CSF tau from 3xTg, Tg4510, and Tau Alone transgenic mice. All three lines of mice showed age-dependent increases in CSF tau. They varied in phenotype from undetectable to severe tau pathology and neurodegeneration, suggesting that degenerating neurons are unlikely to be the only source of pathologic CSF tau. Overall, CSF tau levels mirrored expression levels and changes of tau in the brain, but they did not always correlate exactly. CSF tau was often more sensitive to changes in brain transgene expression and pathology. In addition, we also developed ELISA assays specific to different regions of the tau protein. We used these assays to provide evidence that CSF tau exists as fragments, with little intact C-terminus and partial loss of the N-terminus. Taken together, these assays and mouse models may be used to facilitate a deeper understanding of CSF tau in neurodegenerative disease.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacodynamics of Selective Inhibition of γ -Secretase by Avagacestat

Charles F. Albright; Randy C. Dockens; Jere E. Meredith; Richard E. Olson; Randy Slemmon; Kimberley A. Lentz; Jun-Sheng Wang; Rex Denton; Gary Pilcher; Paul Rhyne; Joseph Raybon; Donna M. Barten; Catherine R. Burton; Jeremy H. Toyn; Sethu Sankaranarayanan; Craig Polson; Valerie Guss; Randy White; Frank Simutis; Thomas P. Sanderson; Kevin W. Gillman; John E. Starrett; Joanne J. Bronson; Oleksandr Sverdlov; Shu-Pang Huang; Lorna Castaneda; Howard Feldman; Vlad Coric; Robert Zaczek; John E. Macor

A hallmark of Alzheimer’s disease (AD) pathology is the accumulation of brain amyloid β-peptide (Aβ), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aβ and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling. Avagacestat (BMS-708163) is a GSI developed for selective inhibition of APP over Notch cleavage. Avagacestat inhibition of APP and Notch cleavage was evaluated in cell culture by measuring levels of Aβ and human Notch proteins. In rats, dogs, and humans, selectivity was evaluated by measuring plasma blood concentrations in relation to effects on cerebrospinal fluid (CSF) Aβ levels and Notch-related toxicities. Measurements of Notch-related toxicity included goblet cell metaplasia in the gut, marginal-zone depletion in the spleen, reductions in B cells, and changes in expression of the Notch-regulated hairy and enhancer of split homolog-1 from blood cells. In rats and dogs, acute administration of avagacestat robustly reduced CSF Aβ40 and Aβ42 levels similarly. Chronic administration in rats and dogs, and 28-day, single- and multiple-ascending–dose administration in healthy human subjects caused similar exposure-dependent reductions in CSF Aβ40. Consistent with the 137-fold selectivity measured in cell culture, we identified doses of avagacestat that reduce CSF Aβ levels without causing Notch-related toxicities. Our results demonstrate the selectivity of avagacestat for APP over Notch cleavage, supporting further evaluation of avagacestat for AD therapy.


Journal of Pharmacology and Experimental Therapeutics | 2008

P-Glycoprotein Efflux and Other Factors Limit Brain Amyloid β Reduction by β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Inhibitors in Mice

Jere E. Meredith; Lorin A. Thompson; Jeremy H. Toyn; Donna M. Barten; Jovita Marcinkeviciene; Lisa M. Kopcho; Young Kook Kim; Alan Lin; Valerie Guss; Catherine R. Burton; Lawrence G. Iben; Craig Polson; Joe Cantone; Michael J. Ford; Dieter M. Drexler; Tracey Fiedler; Kimberley A. Lentz; James E. Grace; Janet Kolb; Jason A. Corsa; Maria Pierdomenico; Kelli M. Jones; Richard E. Olson; John E. Macor; Charles F. Albright

Alzheimers disease (AD) is a progressive neurodegenerative disease. Amyloid β (Aβ) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Aβ. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Aβ formation in cultured cells with IC50 values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Aβ peptides by mass spectrometry showed that these inhibitors decreased Aβ by inhibiting BACE1. An assay for Aβ1–40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Aβ1–40, but not brain Aβ1–40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Aβ1–40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Aβ1–40 and brain Aβ1–40 dose responses for these three compounds revealed differences in relative ED50 values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.


Journal of Neurochemistry | 2012

Measurement of Aβ1–42 in cerebrospinal fluid is influenced by matrix effects

J. Randall Slemmon; Jere E. Meredith; Valerie Guss; Ulf Andreasson; Niels Andreasen; Henrik Zetterberg; Kaj Blennow

J. Neurochem. (2012) 120, 325–333.


Journal of Pharmacology and Experimental Therapeutics | 2016

Robust Translation of γ-Secretase Modulator Pharmacology across Preclinical Species and Human Subjects

Jeremy H. Toyn; Kenneth M. Boy; Joseph Raybon; Jere E. Meredith; Alan S. Robertson; Valerie Guss; Nina Hoque; Francis Sweeney; Xiaoliang Zhuo; Wendy Clarke; Kimberly Snow; Rex Denton; Dmitry Zuev; Lorin A. Thompson; John Morrison; James E. Grace; Flora Berisha; Michael T. Furlong; Jun-Sheng Wang; Kimberly A. Lentz; Ramesh Padmanabha; Lynda S. Cook; Cong Wei; Dieter M. Drexler; John E. Macor; Charlie F. Albright; Maciej Gasior; Richard E. Olson; Quan Hong; Holly Soares

The amyloid-β peptide (Aβ)—in particular, the 42–amino acid form, Aβ1-42—is thought to play a key role in the pathogenesis of Alzheimer’s disease (AD). Thus, several therapeutic modalities aiming to inhibit Aβ synthesis or increase the clearance of Aβ have entered clinical trials, including γ-secretase inhibitors, anti-Aβ antibodies, and amyloid-β precursor protein cleaving enzyme inhibitors. A unique class of small molecules, γ-secretase modulators (GSMs), selectively reduce Aβ1-42 production, and may also decrease Aβ1-40 while simultaneously increasing one or more shorter Aβ peptides, such as Aβ1-38 and Aβ1-37. GSMs are particularly attractive because they do not alter the total amount of Aβ peptides produced by γ-secretase activity; they spare the processing of other γ-secretase substrates, such as Notch; and they do not cause accumulation of the potentially toxic processing intermediate, β-C-terminal fragment. This report describes the translation of pharmacological activity across species for two novel GSMs, (S)-7-(4-fluorophenyl)-N2-(3-methoxy-4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)-N4-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidine-2,4-diamine (BMS-932481) and (S,Z)-17-(4-chloro-2-fluorophenyl)-34-(3-methyl-1H-1,2,4-triazol-1-yl)-16,17-dihydro-15H-4-oxa-2,9-diaza-1(2,4)-cyclopenta[d]pyrimidina-3(1,3)-benzenacyclononaphan-6-ene (BMS-986133). These GSMs are highly potent in vitro, exhibit dose- and time-dependent activity in vivo, and have consistent levels of pharmacological effect across rats, dogs, monkeys, and human subjects. In rats, the two GSMs exhibit similar pharmacokinetics/pharmacodynamics between the brain and cerebrospinal fluid. In all species, GSM treatment decreased Aβ1-42 and Aβ1-40 levels while increasing Aβ1-38 and Aβ1-37 by a corresponding amount. Thus, the GSM mechanism and central activity translate across preclinical species and humans, thereby validating this therapeutic modality for potential utility in AD.


BMC Neuroscience | 2010

Viable mouse gene ablations that robustly alter brain Aβ levels are rare

Jeremy H. Toyn; Xu-Alan Lin; Mark W. Thompson; Valerie Guss; Jere E. Meredith; Sethu Sankaranarayanan; Nestor X. Barrezueta; John P. Corradi; Antara Majumdar; Daniel L. Small; Melissa Hansard; Thomas H. Lanthorn; Ryan Westphal; Charles F. Albright

BackgroundAccumulation of amyloid-β (Aβ) peptide in the brain is thought to play a key pathological role in Alzheimers disease. Many pharmacological targets have therefore been proposed based upon the biochemistry of Aβ, but not all are equally tractable for drug discovery.ResultsTo search for novel targets that affect brain Aβ without causing toxicity, we screened mouse brain samples from 1930 novel gene knock-out (KO) strains, representing 1926 genes, using Aβ ELISA assays. Although robust Aβ lowering was readily apparent in brains from a BACE1 KO strain, none of the novel strains exhibited robust decreases in brain Aβ, including a GPR3 KO strain, which had previously been proposed as an Aβ target. However, significantly increased Aβ was observed in brain samples from two KO strains, corresponding to genes encoding the glycosylphosphatidylinositol mannosyl transferase PIGZ and quinolinate phosphoribosyltransferase (QPRT).ConclusionsThus, gene ablations that are permissive for mouse survival and that also have a robust effect on Aβ levels in the brain are rare.


International Journal of Alzheimer's Disease | 2014

Identification and Preclinical Pharmacology of the γ-Secretase Modulator BMS-869780.

Jeremy H. Toyn; Lorin A. Thompson; Kimberley A. Lentz; Jere E. Meredith; Catherine R. Burton; Sethu Sankaranararyanan; Valerie Guss; Tracey Hall; Lawrence G. Iben; Carol M. Krause; Rudy Krause; Xu-Alan Lin; Maria Pierdomenico; Craig Polson; Alan S. Robertson; Rex Denton; James E. Grace; John Morrison; Joseph Raybon; Xiaoliang Zhuo; Kimberly Snow; Ramesh Padmanabha; Michele Agler; Kim Esposito; David G. Harden; Margaret M Prack; Sam Varma; Victoria Wong; Yingjie Zhu; Tatyana Zvyaga

Alzheimers disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-β peptide (Aβ), particularly the 42-amino acid Aβ1-42, in the brain. Aβ1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aβ production. BMS-869780 is a potent GSM that decreased Aβ1-42 and Aβ1-40 and increased Aβ1-37 and Aβ1-38, without inhibiting overall levels of Aβ peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aβ1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aβ1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aβ1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aβ1-42 without Notch-related side effects.


Bioorganic & Medicinal Chemistry Letters | 2012

2-(N-Benzyl-N-phenylsulfonamido)alkyl amide derivatives as γ-secretase inhibitors.

Michael F. Parker; Donna M. Barten; Carl P. Bergstrom; Joanne J. Bronson; Jason A. Corsa; Michael F. Dee; Yonghua Gai; Valerie Guss; Mendi A. Higgins; Daniel J. Keavy; Alice Loo; Robert A. Mate; Larry R. Marcin; Katharine E. McElhone; Craig Polson; Susan B. Roberts; John E. Macor

A series of (N-benzyl-N-phenylsulfonamido)alkyl amides were developed from classic and parallel synthesis strategies. Compounds with good in vitro and in vivo γ-secretase activity were identified and described.

Collaboration


Dive into the Valerie Guss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge