Valérie Legué
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Legué.
Nature | 2008
Francis L. Martin; Andrea Aerts; Dag Ahrén; Annick Brun; E. G. J. Danchin; F. Duchaussoy; J. Gibon; Annegret Kohler; Erika Lindquist; V. Pereda; Asaf Salamov; Harris Shapiro; Jan Wuyts; D. Blaudez; M. Buée; P. Brokstein; Björn Canbäck; D. Cohen; P. E. Courty; P. M. Coutinho; Christine Delaruelle; John C. Detter; A. Deveau; Stephen P. DiFazio; Sébastien Duplessis; L. Fraissinet-Tachet; E. Lucic; P. Frey-Klett; C. Fourrey; Ivo Feussner
Mycorrhizal symbioses—the union of roots and soil fungi—are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains ∼20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
Current Biology | 2011
Jonathan M. Plett; Minna Kemppainen; Shiv D. Kale; Annegret Kohler; Valérie Legué; Annick Brun; Brett M. Tyler; Alejandro G. Pardo; Francis L. Martin
Soil-borne mutualistic fungi, such as the ectomycorrhizal fungi, have helped shape forest communities worldwide over the last 180 million years through a mutualistic relationship with tree roots in which the fungal partner provides a large array of nutrients to the plant host in return for photosynthetically derived sugars. This exchange is essential for continued growth and productivity of forest trees, especially in nutrient-poor soils. To date, the signals from the two partners that mediate this symbiosis have remained uncharacterized. Here we demonstrate that MYCORRHIZAL iNDUCED SMALL SECRETED PROTEIN 7 (MiSSP7), the most highly symbiosis-upregulated gene from the ectomycorrhizal fungus Laccaria bicolor, encodes an effector protein indispensible for the establishment of mutualism. MiSSP7 is secreted by the fungus upon receipt of diffusible signals from plant roots, imported into the plant cell via phosphatidylinositol 3-phosphate-mediated endocytosis, and targeted to the plant nucleus where it alters the transcriptome of the plant cell. L. bicolor transformants with reduced expression of MiSSP7 do not enter into symbiosis with poplar roots. MiSSP7 resembles effectors of pathogenic fungi, nematodes, and bacteria that are similarly targeted to the plant nucleus to promote colonization of the plant tissues and thus can be considered a mutualism effector.
Plant Physiology | 2009
Judith Felten; Annegret Kohler; Emmanuelle Morin; Rishikesh P. Bhalerao; Klaus Palme; Francis L. Martin; Franck Anicet Ditengou; Valérie Legué
The early phase of the interaction between tree roots and ectomycorrhizal fungi, prior to symbiosis establishment, is accompanied by a stimulation of lateral root (LR) development. We aimed to identify gene networks that regulate LR development during the early signal exchanges between poplar (Populus tremula × Populus alba) and the ectomycorrhizal fungus Laccaria bicolor with a focus on auxin transport and signaling pathways. Our data demonstrated that increased LR development in poplar and Arabidopsis (Arabidopsis thaliana) interacting with L. bicolor is not dependent on the ability of the plant to form ectomycorrhizae. LR stimulation paralleled an increase in auxin accumulation at root apices. Blocking plant polar auxin transport with 1-naphthylphthalamic acid inhibited LR development and auxin accumulation. An oligoarray-based transcript profile of poplar roots exposed to molecules released by L. bicolor revealed the differential expression of 2,945 genes, including several components of polar auxin transport (PtaPIN and PtaAUX genes), auxin conjugation (PtaGH3 genes), and auxin signaling (PtaIAA genes). Transcripts of PtaPIN9, the homolog of Arabidopsis AtPIN2, and several PtaIAAs accumulated specifically during the early interaction phase. Expression of these rapidly induced genes was repressed by 1-naphthylphthalamic acid. Accordingly, LR stimulation upon contact with L. bicolor in Arabidopsis transgenic plants defective in homologs of these genes was decreased or absent. Furthermore, in Arabidopsis pin2, the root apical auxin increase during contact with the fungus was modified. We propose a model in which fungus-induced auxin accumulation at the root apex stimulates LR formation through a mechanism involving PtaPIN9-dependent auxin redistribution together with PtaIAA-based auxin signaling.
Molecular Plant-microbe Interactions | 2012
Stéphane Hacquard; David L. Joly; Yao-Cheng Lin; Emilie Tisserant; Nicolas Feau; Christine Delaruelle; Valérie Legué; Annegret Kohler; Philippe Tanguay; Benjamin Petre; Pascal Frey; Yves Van de Peer; Pierre Rouzé; Francis L. Martin; Richard C. Hamelin; Sébastien Duplessis
The obligate biotrophic rust fungus Melampsora larici-populina is the most devastating and widespread pathogen of poplars. Studies over recent years have identified various small secreted proteins (SSP) from plant biotrophic filamentous pathogens and have highlighted their role as effectors in host-pathogen interactions. The recent analysis of the M. larici-populina genome sequence has revealed the presence of 1,184 SSP-encoding genes in this rust fungus. In the present study, the expression and evolutionary dynamics of these SSP were investigated to pinpoint the arsenal of putative effectors that could be involved in the interaction between the rust fungus and poplar. Similarity with effectors previously described in Melampsora spp., richness in cysteines, and organization in large families were extensively detailed and discussed. Positive selection analyses conducted over clusters of paralogous genes revealed fast-evolving candidate effectors. Transcript profiling of selected M. laricipopulina SSP showed a timely coordinated expression during leaf infection, and the accumulation of four candidate effectors in distinct rust infection structures was demonstrated by immunolocalization. This integrated and multifaceted approach helps to prioritize candidate effector genes for functional studies.
Plant Cell and Environment | 2013
Poornima Sukumar; Valérie Legué; Alice Vayssières; Francis L. Martin; Gerald A. Tuskan; Udaya C. Kalluri
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin-signalling pathways in modulating plant-microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter-species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant-microbe interactions.
Nature Communications | 2015
Franck Anicet Ditengou; Anna Ophelia Müller; Maaria Rosenkranz; Judith Felten; Hanna Lasok; Maja Miloradovic van Doorn; Valérie Legué; Klaus Palme; Jörg-Peter Schnitzler; Andrea Polle
The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (–)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates.
Plant Physiology | 2012
Adeline Rigal; Yordan S. Yordanov; Irene Perrone; Anna Karlberg; Emilie Tisserant; Catherine Bellini; Victor Busov; Francis L. Martin; Annegret Kohler; Rishi Bhalerao; Valérie Legué
Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots.
Molecular Plant-microbe Interactions | 2002
David Reboutier; Michele Wolfe Bianchi; Mathias Brault; Camille Roux; Aurélien Dauphin; Jean-Pierre Rona; Valérie Legué; Frédéric Lapeyrie; François Bouteau
Signals leading to mycorrhizal differentiation are largely unknown. We have studied the sensitivity of the root system from plant model Arabidopsis thaliana to hypaphorine, the major indolic compound isolated from the basidiomycetous fungus Pisolithus tinctorius. This fungi establishes ectomycorrhizas with Eucalyptus globulus. Hypaphorine controls root hair elongation and counteracts the activity of indole-3-acetic acid on root elongation on A. thaliana, as previously reported for the host plant. In addition, we show that hypaphorine counteracts the rapid upregulation by indole-3-acetic acid and 1-naphthalenic-acetic acid of the primary auxin-responsive gene IAA1 and induces a rapid, transient membrane depolarization in root hairs and suspension cells, due to the modulation of anion and K+ currents. These early responses indicate that components necessary for symbiosis-related differentiation events are present in the nonhost plant A. thaliana and provide tools for the dissection of the hypaphorine-auxin interaction.
Molecular Plant-microbe Interactions | 2010
Stéphane Hacquard; Christine Delaruelle; Valérie Legué; Emilie Tisserant; Annegret Kohler; Pascal Frey; Francis L. Martin; Sébastien Duplessis
The foliar rust caused by the basidiomycete Melampsora larici-populina is the main disease affecting poplar plantations in Europe. The biotrophic status of rust fungi is a major limitation to study gene expression of cell or tissue types during host infection. At the uredinial stage, infected poplar leaves contain distinct rust tissues such as haustoria, infection hyphae, and uredinia with sporogenous hyphae and newly formed asexual urediniospores. Laser capture microdissection (LCM) was used to isolate three areas corresponding to uredinia and subjacent zones in the host mesophyll for expression analysis with M. larici-populina whole-genome exon oligoarrays. Optimization of tissue preparation prior to LCM allowed isolation of RNA of good integrity for genome-wide expression profiling. Our results indicate that the poplar rust uredinial stage is marked by distinct genetic programs related to biotrophy in the host palisade mesophyll and to sporulation in the uredinium. A strong induction of transcripts encoding small secreted proteins, likely containing rust effectors, is observed in the mesophyll, suggesting a late maintenance of suppression of host defense in the tissue containing haustoria and infection hyphae. On the other hand, cell cycle and cell defense rescue transcripts are strongly accumulated in the sporulation area. This combined LCM-transcriptomic approach brings new insights on the molecular mechanisms underlying urediniospore formation in rust fungi.
Physiologia Plantarum | 2008
Dominique Driss-Ecole; Valérie Legué; Eugénie Carnero-Diaz; Gérald Perbal
The GRAVI-1 experiment was brought on board the International Space Station by Discovery (December 2006) and carried out in January 2007 in the European Modular Cultivation System facility. For the first run of this experiment, lentil seedlings were hydrated and grown in microgravity for 15 h and then subjected for 13 h 40 min to centrifugal accelerations ranging from 0.29 x 10(-2) g to 0.99 x 10(-2) g. During the second run, seedlings were grown either for 30 h 30 min in microgravity (this sample was the control) or for 21 h 30 min and then subjected to centrifugal accelerations ranging from 1.2 x 10(-2) g to 2.0 x 10(-2) g for 9 h. In both cases, root orientation and root curvature were followed by time-lapse photography. Still images were downlinked in near real time to ground Norwegian User Support and Operations Center during the experiment. The position of the root tip and the root curvature were analyzed as a function of time. It has been shown that in microgravity, the embryonic root curved strongly away from the cotyledons (automorphogenesis) and then straightened out slowly from 17 to 30 h following hydration (autotropism). Because of the autotropic straightening of roots in microgravity, their tip was oriented at an angle close to the optimal angle of curvature (120 degrees -135 degrees ) for a period of 2 h during centrifugation. Moreover, it has been demonstrated that lentil roots grown in microgravity before stimulation were more sensitive than roots grown in 1 g. In these conditions, the threshold acceleration perceived by these organs was found to be between 0 and 2.0 x 10(-3) g and estimated punctually at 1.4 x 10(-5) g by using the hyperbolic model for fitting the experimental data and by assuming that autotropism had no or little impact on the gravitropic response. Gravisensing by statoliths should be possible at such a low level of acceleration because the actomyosin system could provide the necessary work to overcome the activation energy for gravisensing.