Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie Plaisance is active.

Publication


Featured researches published by Valérie Plaisance.


Journal of Cell Science | 2004

Complexin I regulates glucose-induced secretion in pancreatic β-cells

Amar Abderrahmani; Guy Niederhauser; Valérie Plaisance; Marc-Estienne Roehrich; Vincent Lenain; Thierry Coppola; Romano Regazzi; Gérard Waeber

The neuronal-specific protein complexin I (CPX I) plays an important role in controlling the Ca2+-dependent neurotransmitter release. Since insulin exocytosis and neurotransmitter release rely on similar molecular mechanisms and that pancreatic β-cells and neuronal cells share the expression of many restricted genes, we investigated the potential role of CPX I in insulin-secreting cells. We found that pancreatic islets and several insulin-secreting cell lines express high levels of CPX I. The β-cell expression of CPX I is mediated by the presence of a neuron restrictive silencer element located within the regulatory region of the gene. This element bound the transcriptional repressor REST, which is found in most cell types with the exception of mature neuronal cells and β-cells. Overexpression of CPX I or silencing of the CPX I gene (Cplx1) by RNA interference led to strong impairment in β-cell secretion in response to nutrients such as glucose, leucine and KCl. This effect was detected both in the early and the sustained secretory phases but was much more pronounced in the early phase. We conclude that CPX I plays a critical role in β-cells in the control of the stimulated-exocytosis of insulin.


Molecular and Cellular Biology | 2001

The transcriptional repressor REST determines the cell-specific expression of the human MAPK8IP1 gene encoding IB1 (JIP-1).

Amar Abderrahmani; Myriam Steinmann; Valérie Plaisance; Guy Niederhauser; Jacques-Antoine Haefliger; Vincent Mooser; Christophe Bonny; Pascal Nicod; Gérard Waeber

ABSTRACT Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5′ regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in β-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5′ regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting β cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-β and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the humanIB1 gene.


FEBS Letters | 2004

Neuronal traits are required for glucose-induced insulin secretion

Amar Abderrahmani; Guy Niederhauser; Valérie Plaisance; Jacques-Antoine Haefliger; Romano Regazzi; Gérard Waeber

The transcriptional repressor RE1 silencer transcription factor (REST) is an important factor that restricts some neuronal traits to neurons. Since these traits are also present in pancreatic β‐cells, we evaluated their role by generating a model of insulin‐secreting cells that express REST. The presence of REST led to a decrease in expression of its known target genes, whereas insulin expression and its cellular content were conserved. As a consequence of REST expression, the capacity to secrete insulin in response to mitochondrial fuels, a particularity of mature β‐cells, was impaired. These data provide evidence that REST target genes are required for an appropriate glucose‐induced insulin secretion.


Diabetologia | 2011

Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets

Dimitri Favre; Guy Niederhauser; D. Fahmi; Valérie Plaisance; Saška Brajkovic; Nicole Beeler; Florent Allagnat; Jacques-Antoine Haefliger; Romano Regazzi; Gérard Waeber; Amar Abderrahmani

Aims/hypothesisPro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL.MethodsIsolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei.ResultsExposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions.Conclusions/interpretationInduction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatment.


Experimental Diabetes Research | 2014

Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes

Valérie Plaisance; Gérard Waeber; Romano Regazzi; Amar Abderrahmani

Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.


Biochemical Society Transactions | 2006

Mechanisms controlling the expression of the components of the exocytotic apparatus under physiological and pathological conditions

Amar Abderrahmani; Valérie Plaisance; Pascal Lovis; Romano Regazzi

The last decade has witnessed spectacular progress in the identification of the protein apparatus required for exocytosis of neurotransmitters, peptide hormones and other bioactive products. In striking contrast, our knowledge of the mechanisms determining the expression of the components of the secretory machinery has remained rudimentary. Since modifications in secretory functions are associated with several physiological processes and contribute to the development of human pathologies, a better knowledge of the control of the expression of the genes involved in exocytosis is urgently needed. Recent studies have led to the identification of transcription factors and other regulatory molecules such as microRNAs that modulate the cellular level of key controllers of the exocytotic process. These findings furnish a new perspective for understanding how secretory functions can adapt to normal physiological conditions and shed light on the mechanisms involved in the development of important human diseases such as diabetes mellitus characterized by defective release of bioactive compounds.


Biochemical and Biophysical Research Communications | 2002

The mif gene is transcriptionally regulated by glucose in insulin-secreting cells

Valérie Plaisance; Nancy Thompson; Guy Niederhauser; Jacques-Antoine Haefliger; Pascal Nicod; Gérard Waeber; Amar Abderrahmani

Macrophage migration inhibitory factor (MIF) is an important regulator of glucose homeostasis. In pancreatic beta-cells, MIF expression is regulated by glucose and its secretion potentiates the glucose-induced insulin secretion. The molecular mechanisms by which glucose mediates its effect on MIF expression are not elucidated. Herein, we report that incubating the differentiated insulin-secreting cell line INS-1 in high glucose concentration increases MIF transcriptional activity as well as the reporter gene activity driven by the -1033 to +63 bp fragment of the MIF promoter. A minimal region located between -187 and -98 bp of this promoter sequence contributes both to basal activity and glucose-responsiveness of the gene. Within this promoter region, two cis-binding sequences were identified by mobility shift assays and footprinting experiments. Both cis-elements interact with nuclear proteins expressed specifically in insulin-secreting cells. In conclusion, we identified a minimal region of the MIF promoter which contributes to the glucose stimulation of the mif gene in insulin-secreting cells.


Molecular and Cellular Endocrinology | 2009

Role of the transcriptional factor C/EBPβ in free fatty acid-elicited β-cell failure

Valérie Plaisance; Véronique Perret; Dimitri Favre; Amar Abderrahmani; Jiang-Yan Yang; Christian Widmann; Romano Regazzi

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.


PLOS ONE | 2016

Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

Valérie Plaisance; Saška Brajkovic; Mathie Tenenbaum; Dimitri Favre; Hélène Ezanno; Amélie Bonnefond; Caroline Bonner; Julie Kerr-Conte; Benoit R. Gauthier; Christian Widmann; Gérard Waeber; François Pattou; Philippe Froguel; Amar Abderrahmani

Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment.


Experimental Diabetes Research | 2014

The Class I Histone Deacetylase Inhibitor MS-275 Prevents Pancreatic Beta Cell Death Induced by Palmitate

Valérie Plaisance; Laure Rolland; Jean-Sébastien Annicotte; Julie Kerr-Conte; François Pattou; Amar Abderrahmani

Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes.

Collaboration


Dive into the Valérie Plaisance's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge