Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valerio Mariani.
Journal of Applied Crystallography | 2016
Thomas A. White; Valerio Mariani; Wolfgang Brehm; Oleksandr Yefanov; Anton Barty; Kenneth R. Beyerlein; Fedor Chervinskii; Lorenzo Galli; Cornelius Gati; Takanori Nakane; Alexandra Tolstikova; Keitaro Yamashita; Chun Hong Yoon; Kay Diederichs; Henry N. Chapman
Developments in the CrystFEL software suite, for processing diffraction data from ‘serial crystallography’ experiments, are described.
Nature | 2016
Kartik Ayyer; Oleksandr Yefanov; Dominik Oberthür; Shatabdi Roy-Chowdhury; Lorenzo Galli; Valerio Mariani; Shibom Basu; Jesse Coe; Chelsie E. Conrad; Raimund Fromme; Alexander Schaffer; Katerina Dörner; Daniel James; Christopher Kupitz; Markus Metz; Garrett Nelson; Paulraj Lourdu Xavier; Kenneth R. Beyerlein; Marius Schmidt; Iosifina Sarrou; John C. Spence; Uwe Weierstall; Thomas A. White; Jay How Yang; Yun Zhao; Mengning Liang; Andrew Aquila; Mark S. Hunter; Jason E. Koglin; Sébastien Boutet
The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.
Scientific Reports | 2017
Dominik Oberthuer; Juraj Knoška; Max O. Wiedorn; Kenneth R. Beyerlein; David A. Bushnell; Elena G. Kovaleva; Michael Heymann; Lars Gumprecht; Richard A. Kirian; Anton Barty; Valerio Mariani; Aleksandra Tolstikova; Luigi Adriano; Salah Awel; Miriam Barthelmess; Katerina Dörner; P. Lourdu Xavier; Oleksandr Yefanov; Daniel James; Garrett Nelson; Dingjie Wang; George Calvey; Yujie Chen; Andrea Schmidt; Michael Szczepek; Stefan Frielingsdorf; Oliver Lenz; Edward H. Snell; Philip J. J. Robinson; Božidar Šarler
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.
Optics Express | 2015
Oleksandr Yefanov; Valerio Mariani; Cornelius Gati; Thomas A. White; Henry N. Chapman; Anton Barty
Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments.
Journal of Physics B | 2015
Thomas Kierspel; Joss Wiese; Terry Mullins; Andy Aquila; Anton Barty; Richard Bean; Rebecca Boll; Sébastien Boutet; P. H. Bucksbaum; Henry N. Chapman; Lauge Christensen; Alan Fry; Mark S. Hunter; Jason E. Koglin; Mengning Liang; Valerio Mariani; Andrew J. Morgan; Adi Natan; Vladimir Petrovic; Daniel Rolles; Artem Rudenko; Kirsten Schnorr; Henrik Stapelfeldt; Stephan Stern; Jan Thøgersen; Chun Hong Yoon; Fenglin Wang; Sebastian Trippel; Jochen Küpper
Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of
Journal of Applied Crystallography | 2016
Valerio Mariani; Andrew J. Morgan; Chun Hong Yoon; Thomas J. Lane; Thomas A. White; Christopher P. O'Grady; Manuela Kuhn; Steve Aplin; Jason E. Koglin; Anton Barty; Henry N. Chapman
IUCrJ | 2017
Kenneth R. Beyerlein; Dennis Dierksmeyer; Valerio Mariani; Manuela Kuhn; Iosifina Sarrou; Angelica Ottaviano; Salah Awel; Juraj Knoška; Silje Skeide Fuglerud; O Jonsson; Stephan Stern; Max O. Wiedorn; Oleksandr Yefanov; Luigi Adriano; Richard Bean; Anja Burkhardt; Pontus Fischer; Michael Heymann; Daniel A. Horke; Katharina E.J. Jungnickel; Elena G. Kovaleva; Olga Lorbeer; Markus Metz; Jan Meyer; Andrew J. Morgan; Kanupriya Pande; Saravanan Panneerselvam; Carolin Seuring; Aleksandra Tolstikova; Julia Lieske
\langle {\mathrm{cos}}^{2}{\theta }_{2{\rm{D}}}\rangle =0.85
Journal of Applied Crystallography | 2017
Henry N. Chapman; Oleksandr Yefanov; Kartik Ayyer; Thomas A. White; Anton Barty; Andrew J. Morgan; Valerio Mariani; Dominik Oberthuer; Kanupriya Pande
Light-Science & Applications | 2018
Sasa Bajt; Mauro Prasciolu; Holger Fleckenstein; Martin Domaracký; Henry N. Chapman; Andrew J. Morgan; Oleksandr Yefanov; Marc Messerschmidt; Yang Du; Kevin T. Murray; Valerio Mariani; Manuela Kuhn; Steven Aplin; Kanupriya Pande; Pablo Villanueva-Perez; Karolina Stachnik; Joe Pj Chen; Andrzej Andrejczuk; Alke Meents; Anja Burkhardt; David Pennicard; Xiaojing Huang; Hanfei Yan; Evgeny Nazaretski; Yong S. Chu; Christian E Hamm
was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.
Journal of Applied Crystallography | 2018
Salah Awel; Richard A. Kirian; Max O. Wiedorn; Kenneth R. Beyerlein; Nils Roth; Daniel A. Horke; Dominik Oberthür; Juraj Knoška; Valerio Mariani; Andrew J. Morgan; Luigi Adriano; Alexandra Tolstikova; P. Lourdu Xavier; Oleksandr Yefanov; Andrew Aquila; Anton Barty; Shatabdi Roy-Chowdhury; Mark S. Hunter; Daniel James; Uwe Weierstall; Andrei Rode; Sasa Bajt; Jochen Küpper; Henry N. Chapman
This article describes the software package OnDA: online data analysis and feedback for serial X-ray imaging.