Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valéry Payen is active.

Publication


Featured researches published by Valéry Payen.


Cell Reports | 2014

A mitochondrial switch promotes tumor metastasis

Paolo E. Porporato; Valéry Payen; Jhudit Pérez-Escuredo; Christophe De Saedeleer; Pierre Danhier; Tamara Copetti; Suveera Dhup; Morgane Tardy; Thibaut Vazeille; Caroline Bouzin; Olivier Feron; Carine Michiels; Bernard Gallez; Pierre Sonveaux

Metastatic progression of cancer is associated with poor outcome, and here we examine metabolic changes underlying this process. Although aerobic glycolysis is known to promote metastasis, we have now identified a different switch primarily affecting mitochondria. The switch involves overload of the electron transport chain (ETC) with preserved mitochondrial functions but increased mitochondrial superoxide production. It provides a metastatic advantage phenocopied by partial ETC inhibition, another situation associated with enhanced superoxide production. Both cases involved protein tyrosine kinases Src and Pyk2 as downstream effectors. Thus, two different events, ETC overload and partial ETC inhibition, promote superoxide-dependent tumor cell migration, invasion, clonogenicity, and metastasis. Consequently, specific scavenging of mitochondrial superoxide with mitoTEMPO blocked tumor cell migration and prevented spontaneous tumor metastasis in murine and human tumor models.


Angiogenesis | 2012

Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice

Paolo E. Porporato; Valéry Payen; Christophe De Saedeleer; Véronique Préat; Jean-Paul Thissen; Olivier Feron; Pierre Sonveaux

Wounds notoriously accumulate lactate as a consequence of both anaerobic and aerobic glycolysis following microcirculation disruption, immune activation, and increased cell proliferation. Several pieces of evidence suggest that lactate actively participates in the healing process through the activation of several molecular pathways that collectively promote angiogenesis. Lactate indeed stimulates endothelial cell migration and tube formation in vitro, as well as the recruitment of circulating vascular progenitor cells and vascular morphogenesis in vivo. In this study, we examined whether the pro-angiogenic potential of lactate may be exploited therapeutically to accelerate wound healing. We show that lactate delivered from a Matrigel matrix improves reperfusion and opposes muscular atrophy in ischemic hindlimb wounds in mice. Both responses involve lactate-induced reparative angiogenesis. Using microdialysis and enzymatic measurements, we found that, contrary to poly-L-lactide (PLA), a subcutaneous implant of poly-D,L-lactide-co-glycolide (PLGA) allows sustained local and systemic lactate release. PLGA promoted angiogenesis and accelerated the closure of excisional skin wounds in different mouse strains. This polymer is FDA-approved for other applications, emphasizing the possibility of exploiting PLGA therapeutically to improve wound healing.


Cellular and Molecular Life Sciences | 2016

Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway

Valéry Payen; Paolo E. Porporato; Bjorn Baselet; Pierre Sonveaux

Metabolic adaptations are intimately associated with changes in cell behavior. Cancers are characterized by a high metabolic plasticity resulting from mutations and the selection of metabolic phenotypes conferring growth and invasive advantages. While metabolic plasticity allows cancer cells to cope with various microenvironmental situations that can be encountered in a primary tumor, there is increasing evidence that metabolism is also a major driver of cancer metastasis. Rather than a general switch promoting metastasis as a whole, a succession of metabolic adaptations is more likely needed to promote different steps of the metastatic process. This review addresses the contribution of pH, glycolysis and the pentose phosphate pathway, and a companion paper summarizes current knowledge regarding the contribution of mitochondria, lipids and amino acid metabolism. Extracellular acidification, intracellular alkalinization, the glycolytic enzyme phosphoglucose isomerase acting as an autocrine cytokine, lactate and the pentose phosphate pathway are emerging as important factors controlling cancer metastasis.


Oncogene | 2014

Glucose deprivation increases monocarboxylate transporter 1 (MCT1) expression and MCT1-dependent tumor cell migration

Valéry Payen; Christophe De Saedeleer; Paolo E. Porporato; Tamara Copetti; Jhudit Perez Escuredo; Lucie Brisson; Olivier Feron; Pierre Sonveaux

The glycolytic end-product lactate is a pleiotropic tumor growth-promoting factor. Its activities primarily depend on its uptake, a process facilitated by the lactate-proton symporter monocarboxylate transporter 1 (MCT1). Therefore, targeting the transporter or its chaperon protein CD147/basigin, itself involved in the aggressive malignant phenotype, is an attractive therapeutic option for cancer, but basic information is still lacking regarding the regulation of the expression, interaction and activities of both proteins. In this study, we found that glucose deprivation dose-dependently upregulates MCT1 and CD147 protein expression and their interaction in oxidative tumor cells. While this posttranslational induction could be recapitulated using glycolysis inhibition, hypoxia, oxidative phosphorylation (OXPHOS) inhibitor rotenone or hydrogen peroxide, it was blocked with alternative oxidative substrates and specific antioxidants, pointing out at a mitochondrial control. Indeed, we found that the stabilization of MCT1 and CD147 proteins upon glucose removal depends on mitochondrial impairment and the associated generation of reactive oxygen species. When glucose was a limited resource (a situation occurring naturally or during the treatment of many tumors), MCT1-CD147 heterocomplexes accumulated, including in cell protrusions of the plasma membrane. It endowed oxidative tumor cells with increased migratory capacities towards glucose. Migration increased in cells overexpressing MCT1 and CD147, but it was inhibited in glucose-starved cells provided with an alternative oxidative fuel, treated with an antioxidant, lacking MCT1 expression, or submitted to pharmacological MCT1 inhibition. While our study identifies the mitochondrion as a glucose sensor promoting tumor cell migration, MCT1 is also revealed as a transducer of this response, providing a new rationale for the use of MCT1 inhibitors in cancer.


Biochimica et Biophysica Acta | 2016

Monocarboxylate transporters in the brain and in cancer.

Jhudit Pérez-Escuredo; Vincent F. Van Hée; Martina Sboarina; Jorge Falces; Valéry Payen; Luc Pellerin; Pierre Sonveaux

Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1–4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1–4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds

Kiran Kumar Chereddy; Alessandra Lopes; Salomé Koussoroplis; Valéry Payen; Claudia Moia; Huijun Zhu; Pierre Sonveaux; Peter Carmeliet; Anne des Rieux; Gaëlle Vandermeulen; Véronique Préat

UNLABELLED Growth factor therapies to induce angiogenesis and thereby enhance the blood perfusion, hold tremendous potential to address the shortcomings of current impaired wound care modalities. Vascular endothelial growth factor stimulates (VEGF) wound healing via multiple mechanisms. Poly(lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. Hence, we hypothesized that the administration of VEGF encapsulated in PLGA nanoparticles (PLGA-VEGF NP) would promote fast healing due to the sustained and combined effects of VEGF and lactate. In a splinted mouse full thickness excision model, compared with untreated, VEGF and PLGA NP, PLGA-VEGF NP treated wounds showed significant granulation tissue formation with higher collagen content, re-epithelialization and angiogenesis. The cellular and molecular studies revealed that PLGA-VEGF NP enhanced the proliferation and migration of keratinocytes and upregulated the expression of VEGFR2 at mRNA level. We demonstrated the combined effects of lactate and VEGF for active healing of non-diabetic and diabetic wounds. FROM THE CLINICAL EDITOR The study of wound healing has been under a tremendous amount of research over recent years. In diabetic wounds, vasculopathy leading to localized ischemia would often result in delayed 
wound healing. In this article, the authors encapsulated vascular endothelial growth factor stimulates (VEGF) in PLGA nanoparticles and studies the potential pro-healing effects. It was found that the combination of these two components provided synergistic actions for healing. The encouraging results should provide a basis for combination therapy in the future.


Cellular and Molecular Life Sciences | 2016

Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism

Paolo E. Porporato; Valéry Payen; Bjorn Baselet; Pierre Sonveaux

Metabolic alterations are a hallmark of cancer controlling tumor progression and metastasis. Among the various metabolic phenotypes encountered in tumors, this review focuses on the contributions of mitochondria, lipid and amino acid metabolism to the metastatic process. Tumor cells require functional mitochondria to grow, proliferate and metastasize, but shifts in mitochondrial activities confer pro-metastatic traits encompassing increased production of mitochondrial reactive oxygen species (mtROS), enhanced resistance to apoptosis and the increased or de novo production of metabolic intermediates of the TCA cycle behaving as oncometabolites, including succinate, fumarate, and d-2-hydroxyglutarate that control energy production, biosynthesis and the redox state. Lipid metabolism and the metabolism of amino acids, such as glutamine, glutamate and proline are also currently emerging as focal control points of cancer metastasis.


Oncotarget | 2016

Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation.

Géraldine De Preter; Marie-Aline Neveu; Pierre Danhier; Lucie Brisson; Valéry Payen; Paolo E. Porporato; Bénédicte F. Jordan; Pierre Sonveaux; Bernard Gallez

Glucose fermentation through glycolysis even in the presence of oxygen (Warburg effect) is a common feature of cancer cells increasingly considered as an enticing target in clinical development. This study aimed to analyze the link between metabolism, energy stores and proliferation rates in cancer cells. We found that cell proliferation, evaluated by DNA synthesis quantification, is correlated to glycolytic efficiency in six cancer cell lines as well as in isogenic cancer cell lines. To further investigate the link between glycolysis and proliferation, a pharmacological inhibitior of the pentose phosphate pathway (PPP) was used. We demonstrated that reduction of PPP activity decreases cancer cells proliferation, with a profound effect in Warburg-phenotype cancer cells. The crucial role of the PPP in sustaining cancer cells proliferation was confirmed using siRNAs against glucose-6-phosphate dehydrogenase, the first and rate-limiting enzyme of the PPP. In addition, we found that dichloroacetate (DCA), a new clinically tested compound, induced a switch of glycolytic cancer cells to a more oxidative phenotype and decreased proliferation. By demonstrating that DCA decreased the activity of the PPP, we provide a new mechanism by which DCA controls cancer cells proliferation.


Biochimica et Biophysica Acta | 2017

Cancer metabolism in space and time: beyond the Warburg effect.

Pierre Danhier; Piotr Bański; Valéry Payen; Debora Grasso; Luigi Ippolito; Pierre Sonveaux; Paolo E. Porporato

Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements. Because tumors are composed of different types of cells with metabolic activities affected by different spatial and temporal contexts, it is important to address metabolism taking into account cellular and biological heterogeneity. In this review, we describe this heterogeneity also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Cancer Journal | 2015

Common responses of tumors and wounds to hypoxia.

Valéry Payen; Lucie Brisson; Mark W. Dewhirst; Pierre Sonveaux

Hypoxia is a characteristic of tumors and wounds. Hypoxic cells develop 2 common strategies to face hypoxia: the glycolytic switch and the angiogenic switch. At the onset of hypoxia, alleviation of the Pasteur effect ensures short-term cell survival. Long-term hypoxic cell survival requires a further acceleration of the glycolytic flux under the control of hypoxia-inducible factor 1 that stimulates the expression of most glycolytic transporters and enzymes, uncouples glycolysis from the TCA cycle, and rewires glycolysis to lactic fermentation. Hypoxic cells also trigger angiogenesis, a process that aims to restore normal microenvironmental conditions. Transcription factors (hypoxia-inducible factor 1, nuclear factor κB, activator protein 1) and lactate cooperate to stimulate the expression of proangiogenic agents. Cancer cells differ from normal hypoxic cells by their proliferative agenda and by a high metabolic heterogeneity. These effects in tumor account for further molecular and metabolic changes and for a persistent stimulation of angiogenesis.

Collaboration


Dive into the Valéry Payen's collaboration.

Top Co-Authors

Avatar

Pierre Sonveaux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Paolo E. Porporato

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Olivier Feron

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Christophe De Saedeleer

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pierre Danhier

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Caroline Bouzin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Lucie Brisson

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Tamara Copetti

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Véronique Préat

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Kristin Radecke

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge