Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Sonveaux is active.

Publication


Featured researches published by Pierre Sonveaux.


Journal of Clinical Investigation | 2008

Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice

Pierre Sonveaux; Frédérique Végran; Thies Schroeder; Melanie Wergin; Julien Verrax; Zahid N. Rabbani; Christophe De Saedeleer; Kelly M. Kennedy; Caroline Diepart; Bénédicte F. Jordan; Michael J. Kelley; Bernard Gallez; Miriam L. Wahl; Olivier Feron; Mark W. Dewhirst

Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with alpha-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential.


Cancer Research | 2011

Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that Drives Tumor Angiogenesis

Frédérique Végran; Romain Boidot; Carine Michiels; Pierre Sonveaux; Olivier Feron

Lactate generated from pyruvate fuels production of intracellular NAD(+) as an end result of the glycolytic process in tumors. Elevated lactate concentration represents a good indicator of the metabolic adaptation of tumors and is actually correlated to clinical outcome in a variety of human cancers. In this study, we investigated whether lactate could directly modulate the endothelial phenotype and thereby tumor vascular morphogenesis and perfusion. We found that lactate could enter endothelial cells through the monocarboxylate transporter MCT-1, trigger the phosphorylation/degradation of IκBα, and then stimulate an autocrine NF-κB/IL-8 (CXCL8) pathway driving cell migration and tube formation. These effects were prevented by 2-oxoglutarate and reactive oxygen species (ROS) inhibitors, pointing to a role for prolyl-hydroxylase and ROS in the integration of lactate signaling in endothelial cells. PHD2 silencing in endothelial cells recapitulated the proangiogenic effects of lactate, whereas a blocking IL-8 antibody or IL-8-targeting siRNA prevented them. Finally, we documented in mouse xenograft models of human colorectal and breast cancer that lactate release from tumor cells through the MCT4 (and not MCT1) transporter is sufficient to stimulate IL-8-dependent angiogenesis and tumor growth. In conclusion, our findings establish a signaling role for lactate in endothelial cells and they identify the lactate/NF-κB/IL-8 pathway as an important link between tumor metabolism and angiogenesis.


Frontiers in Pharmacology | 2011

Anticancer targets in the glycolytic metabolism of tumors : a comprehensive review.

Paolo E. Porporato; Suveera Dhup; Rajesh Kumar Dadhich; Tamara Copetti; Pierre Sonveaux

Cancer is a metabolic disease and the solution of two metabolic equations: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed.


PLOS ONE | 2012

Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis

Pierre Sonveaux; Tamara Copetti; Christophe De Saedeleer; Frédérique Végran; Julien Verrax; Kelly M. Kennedy; Eui Jung Moon; Suveera Dhup; Pierre Danhier; Françoise Frérart; Bernard Gallez; Anthony T. Ribeiro; Carine Michiels; Mark W. Dewhirst; Olivier Feron

Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.


Circulation Research | 2004

Caveolin-1 Expression Is Critical for Vascular Endothelial Growth Factor–Induced Ischemic Hindlimb Collateralization and Nitric Oxide–Mediated Angiogenesis

Pierre Sonveaux; Philippe Martinive; Julie DeWever; Zuzana Batova; Géraldine Daneau; Michel Pelat; Philippe Ghisdal; Vincent Grégoire; Chantal Dessy; Jean-Luc Balligand; Olivier Feron

Nitric oxide (NO) is a powerful angiogenic mediator acting downstream of vascular endothelial growth factor (VEGF). Both the endothelial NO synthase (eNOS) and the VEGFR-2 receptor colocalize in caveolae. Because the structural protein of these signaling platforms, caveolin, also represses eNOS activity, changes in its abundance are likely to influence the angiogenic process in various ways. In this study, we used mice deficient for the caveolin-1 gene (Cav−/−) to examine the impact of caveolae suppression in a model of adaptive angiogenesis obtained after femoral artery resection. Evaluation of the ischemic tissue perfusion and histochemical analyses revealed that contrary to Cav+/+ mice, Cav−/− mice failed to recover a functional vasculature and actually lost part of the ligated limbs, thereby recapitulating the effects of the NOS inhibitor l-NAME administered to operated Cav+/+ mice. We also isolated endothelial cells (ECs) from Cav−/− aorta and showed that on VEGF stimulation, NO production and endothelial tube formation were dramatically abrogated when compared with Cav+/+ ECs. The Ser1177 eNOS phosphorylation and Thr495 dephosphorylation but also the ERK phosphorylation were similarly altered in VEGF-treated Cav−/− ECs. Interestingly, caveolin transfection in Cav−/− ECs redirected the VEGFR-2 in caveolar membranes and restored the VEGF-induced ERK and eNOS activation. However, when high levels of recombinant caveolin were reached, VEGF exposure failed to activate ERK and eNOS. These results emphasize the critical role of caveolae in ensuring the coupling between VEGFR-2 stimulation and downstream mediators of angiogenesis. This study also provides new insights to understand the paradoxical roles of caveolin (eg, repressing basal enzyme activity but facilitating activation on agonist stimulation) in cardiovascular pathophysiology.


Current Pharmaceutical Design | 2012

Multiple Biological Activities of Lactic Acid in Cancer: Influences on Tumor Growth, Angiogenesis and Metastasis

Suveera Dhup; Rajesh Kumar Dadhich; Paolo E. Porporato; Pierre Sonveaux

High rate of glycolysis is a metabolic hallmark of cancer. While anaerobic glycolysis promotes energy production under hypoxia, aerobic glycolysis, the Warburg effect, offers a proliferative advantage through redirecting carbohydrate fluxes from energy production to biosynthetic pathways. To fulfill tumor cell needs, the glycolytic switch is associated with elevated glucose uptake and lactic acid release. Altered glucose metabolism is the basis of positron emission tomography using the glucose analogue tracer [18F]- fluorodeoxyglucose, a widely used clinical application for tumor diagnosis and monitoring. On the other hand, high levels of lactate have been associated with poor clinical outcome in several types of human cancers. Although lactic acid was initially considered merely as an indicator of the glycolytic flux, many evidences originally from the study of normal tissue physiology and more recently transposed to the tumor situation indicate that lactic acid, i.e. the lactate anion and protons, directly contributes to tumor growth and progression. Here, we briefly review the current knowledge pertaining to lactic acidosis and metastasis, lactate shuttles, the influence of lactate on redox homeostasis, lactate signaling and lactate-induced angiogenesis in the cancer context. The monocarboxylate transporters MCT1 and MCT4 have now been confirmed as prominent facilitators of lactate exchanges between cancer cells with different metabolic behaviors and between cancer and stromal cells. We therefore address the function and regulation of MCTs, highlighting MCT1 as a novel anticancer target. MCT1 inhibition allows to simultaneously disrupt metabolic cooperativity and angiogenesis in cancer with a same agent, opening a new path for novel anticancer therapies.


Cell Reports | 2014

A mitochondrial switch promotes tumor metastasis

Paolo E. Porporato; Valéry Payen; Jhudit Pérez-Escuredo; Christophe De Saedeleer; Pierre Danhier; Tamara Copetti; Suveera Dhup; Morgane Tardy; Thibaut Vazeille; Caroline Bouzin; Olivier Feron; Carine Michiels; Bernard Gallez; Pierre Sonveaux

Metastatic progression of cancer is associated with poor outcome, and here we examine metabolic changes underlying this process. Although aerobic glycolysis is known to promote metastasis, we have now identified a different switch primarily affecting mitochondria. The switch involves overload of the electron transport chain (ETC) with preserved mitochondrial functions but increased mitochondrial superoxide production. It provides a metastatic advantage phenocopied by partial ETC inhibition, another situation associated with enhanced superoxide production. Both cases involved protein tyrosine kinases Src and Pyk2 as downstream effectors. Thus, two different events, ETC overload and partial ETC inhibition, promote superoxide-dependent tumor cell migration, invasion, clonogenicity, and metastasis. Consequently, specific scavenging of mitochondrial superoxide with mitoTEMPO blocked tumor cell migration and prevented spontaneous tumor metastasis in murine and human tumor models.


Biochimica et Biophysica Acta | 1999

Analogues and homologues of N-palmitoylethanolamide, a putative endogenous CB(2) cannabinoid, as potential ligands for the cannabinoid receptors

Didier M. Lambert; Federica G DiPaolo; Pierre Sonveaux; Martial Kanyonyo; Sophie Govaerts; Emmanuel Hermans; Jean-Luc Bueb; Nathalie M. Delzenne; Eric Tschirhart

The presence of CB(2) receptors was reported in the rat basophilic cell line RBL-2H3 and N-palmitoylethanolamide was proposed as an endogenous, potent agonist of this receptor. We synthesized a series of 10 N-palmitoylethanolamide homologues and analogues, varying by the elongation of the fatty acid chain from caproyl to stearoyl and by the nature of the amide substituent, respectively, and evaluated the affinity of these compounds to cannabinoid receptors in the rat spleen, RBL-2H3 cells and CHO-CB(1) and CHO-CB(2) receptor-transfected cells. In rat spleen slices, CB(2) receptors were the predominant form of the cannabinoid receptors. No binding of [(3)H]SR141716A was observed. [(3)H]CP-55,940 binding was displaced by WIN 55,212-2 and anandamide. No displacement of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 by palmitoylethanolamide derivatives was observed in rat spleen slices. In RBL-2H3 cells, no binding of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 could be observed and conversely, no inhibitory activity of N-palmitoylethanolamide derivatives and analogues was measurable. These compounds do not recognize the human CB(1) and CB(2) receptors expressed in CHO cells. In conclusion, N-palmitoylethanolamide was, in our preparations, a weak ligand while its synthesized homologues or analogues were essentially inactive. Therefore, it seems unlikely that N-palmitoylethanolamide is an endogenous agonist of the CB(2) receptors but it may be a compound with potential therapeutic applications since it may act via other mechanisms than cannabinoid CB(1)-CB(2) receptor interactions.


Cancer Research | 2012

Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors.

Romain Boidot; Frédérique Végran; Aline Meulle; Aude Le Breton; Chantal Dessy; Pierre Sonveaux; Sarab Lizard-Nacol; Olivier Feron

The monocarboxylate transporter (MCT) family member MCT1 can transport lactate into and out of tumor cells. Whereas most oxidative cancer cells import lactate through MCT1 to fuel mitochondrial respiration, the role of MCT1 in glycolysis-derived lactate efflux remains less clear. In this study, we identified a direct link between p53 function and MCT1 expression. Under hypoxic conditions, p53 loss promoted MCT1 expression and lactate export produced by elevated glycolytic flux, both in vitro and in vivo. p53 interacted directly with the MCT1 gene promoter and altered MCT1 mRNA stabilization. In hypoxic p53(-/-) tumor cells, NF-κB further supported expression of MCT1 to elevate its levels. Following glucose deprivation, upregulated MCT1 in p53(-/-) cells promoted lactate import and favored cell proliferation by fuelling mitochondrial respiration. We also found that MCT1 expression was increased in human breast tumors harboring p53 mutations and coincident features of hypoxia, with higher MCT1 levels associated with poorer clinical outcomes. Together, our findings identify MCT1 as a target for p53 repression and they suggest that MCT1 elevation in p53-deficient tumors allows them to adapt to metabolic needs by facilitating lactate export or import depending on the glucose availability.


PLOS ONE | 2012

Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.

Christophe De Saedeleer; Tamara Copetti; Paolo E. Porporato; Julien Verrax; Olivier Feron; Pierre Sonveaux

Cancer can be envisioned as a metabolic disease driven by pressure selection and intercellular cooperativeness. Together with anaerobic glycolysis, the Warburg effect, formally corresponding to uncoupling glycolysis from oxidative phosphorylation, directly participates in cancer aggressiveness, supporting both tumor progression and dissemination. The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key contributor to glycolysis. It stimulates the expression of glycolytic transporters and enzymes supporting high rate of glycolysis. In this study, we addressed the reverse possibility of a metabolic control of HIF-1 in tumor cells. We report that lactate, the end-product of glycolysis, inhibits prolylhydroxylase 2 activity and activates HIF-1 in normoxic oxidative tumor cells but not in Warburg-phenotype tumor cells which also expressed lower basal levels of HIF-1α. These data were confirmed using genotypically matched oxidative and mitochondria-depleted glycolytic tumor cells as well as several different wild-type human tumor cell lines of either metabolic phenotype. Lactate activates HIF-1 and triggers tumor angiogenesis and tumor growth in vivo, an activity that we found to be under the specific upstream control of the lactate transporter monocarboxylate transporter 1 (MCT1) expressed in tumor cells. Because MCT1 also gates lactate-fueled tumor cell respiration and mediates pro-angiogenic lactate signaling in endothelial cells, MCT1 inhibition is confirmed as an attractive anticancer strategy in which a single drug may target multiple tumor-promoting pathways.

Collaboration


Dive into the Pierre Sonveaux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo E. Porporato

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Danhier

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Valéry Payen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bénédicte F. Jordan

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Caroline Bouzin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Chantal Dessy

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Vincent Grégoire

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge