Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valery V. Fokin is active.

Publication


Featured researches published by Valery V. Fokin.


Chemical Society Reviews | 2010

Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides

Jason E. Hein; Valery V. Fokin

Copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(I) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science.


Chemical Reviews | 2009

Organic Synthesis “On Water”

Arani Chanda; Valery V. Fokin

Water is the lingua franca of life on our planet and is the solvent of choice for Nature to carry out her syntheses.1 In contrast, our methods of making complex organic molecules have taken us far away from the watery milieu of biosynthesis. Indeed, it is fair to say that most organic reactions commonly used both in academic laboratories and in industry fail in the presence of water or oxygen. As a direct consequence of our attempts to mimick Natures way of making new chemical bonds, we learned to rely on highly reactive nucleophilic and electrophilic reagents to gain control of the chemical reactivity and to channel chemical reactions down a desired pathway. The requirement for the protection of all protic functional groups, such as alcohols and amines, is another corollary of our reliance on these energetic species. Nevertheless, chemical transformations in aqueous solvents are not new to organic chemists. On the contrary, they have attracted attention of scientists for many years: the first use of water for an organic reaction could be dated back to Wohlers synthesis of urea from ammonium cyanate.2 From a true organic synthesis perspective, the earliest example could be the synthesis of indigo by Baeyer and Drewsen in 1882 (Scheme 1).3 In their synthesis, a suspension of o-nitrobenzaldehyde 1 in aqueous acetone was treated with a solution of sodium hydroxide. The immediate formation of the characteristic blue color of indigo 2 ensued, and the product subsequently precipitated. Scheme 1 Water possesses many unique physical and chemical properties: large temperature window in which it remains in the liquid state, extensive hydrogen bonding, high heat capacity, large dielectric constant, and optimum oxygen solubility to maintain aquatic life forms. These distinctive properties are the consequence of the unique structure of water.4,5 The structure and properties of water have been studied by scientists representing almost all fields of knowledge, and new theoretical models continue to emerge.6,7 Water is also known to enhance the rates and to affect the selectivity of a wide variety of organic reactions.8,9 In spite of these potential advantages, water is still not commonly used as a sole solvent for organic synthesis, at least in part because most organic compounds do not dissolve in water to a significant extent, and solubility is generally considered a prerequisite for reactivity: “corpora non agunt nisi soluta” (substances do not react unless dissolved). Consequently, in the many examples of “aqueous reactions” organic co-solvents are employed in order to increase the solubility of organic reactants in water.9,10 Alternatively, hydrophilicity of the reactants is increased by the introduction of polar functional groups, again to make the resulting compound at least partially water soluble.11 However, these manipulations tend to diminish and even negate the advantages of low cost, simplicity of reaction conditions, ease of workup, and product isolation that water has over traditional solvents. Therefore, the currently burgeoning field of organic synthesis in aqueous media encompasses a large family of reactions. The solubility of reacting species and products can range from complete to partial to practically none, so that reaction mixtures can be both homogeneous and heterogeneous. The amount of water can also range widely, from substoichiometric quantities to a large volume in which the reactants are suspended or dissolved. Several terms have been used in the literature to describe reactions in aqueous millieu. In water, in the presence of water, and on water are commonly found in the recent publications and are often used interchangeably to describe reactions that proceed under very different conditions.12,13 There is also a growing number of examples micellar catalysis in the presence of non-ionic surfactants, such as Triton X-100 and PTS (a tocopherol-based amphiphile).14-18 In this review, we attempt to survey organic transformations that benefit from being performed on water under the conditions defined by Sharpless and co-workers: when insoluble reactant(s) are stirred in aqueous emulsions or suspensions without the addition of any organic co-solvents. In many cases, it is impossible to ascertain whether the reaction is occuring in or on water, but as long as the reaction mixture remains heterogeneous and the overall process appears to benefit from it (either in terms of increased reaction rate or enhanced selectivity), it qualifies. The ‘on water’ moniker reflects the defining attribute of these reactions: the lack of solubility of the reactant(s) in water. A considerable rate acceleration is often observed in reactions carried out under these conditions over those in organic solvents.19 Furthermore, in many cases a significant rate increase of on water reactions over reactions carried out neat indicates that rate acceleration is not merely a consequence of increased concentration of the reacting species. Naturally, the degree of on water acceleration varies between different reaction classes, and even when it is modest, there are other advantages to carrying out reactions in this manner. Firstly, water is an excellent heat sink due to its large heat capacity, making exothermic processes safer and more selective, especially when they are carried out on large scale. Secondly, reactions of water-insoluble substrates usually lead to the formation of water-insoluble products. In such cases, product isolation simply involves filtration of solid products (or phase separation in case of liquids). Finally, the growing list of examples wherein reactions performed on water are not only faster but also more selective (whether chemo-, regio-, or enantio-) underscores the significant potential for process intensification for reactions performed on water. Although claims of the ecological advantages and “greenness” of water are almost invariably found in the opening paragraphs of reports describing aqueous reactions, they should be taken with a grain of salt. The low cost, relative abundance, and inherent safety of water notwithstanding, the environmental impact of a process is determined by many factors, such as the efficiency of the reaction in terms of atom economy,20 the nature of solvents used in the reaction workup, the residual concentration of regulated organic compounds and metal catalysts remaining in the aqueous waste, and the costs of its clean up or disposal.21,22 The mere finding that a process performs as well in water as it does in an organic solvent tells us little about its potential environmental impact. The field of aqueous organic synthesis has been regularly and comprehensively reviewed.9,10,23-27 In addition, recent reviews focusing on microwave assisted organic synthesis in water,28 reactions in near-critical water,29 and biocatalysis in water30 have been published. Accordingly, these topics are not covered in the present review.


Journal of the American Chemical Society | 2008

Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism.

Brant C. Boren; Sridhar Narayan; Lars K. Rasmussen; Li Zhang; Haitao Zhao; Zhenyang Lin; Guochen Jia; Valery V. Fokin

The catalytic activity of a series of ruthenium(II) complexes in azide-alkyne cycloadditions has been evaluated. The [Cp*RuCl] complexes, such as Cp*RuCl(PPh 3) 2, Cp*RuCl(COD), and Cp*RuCl(NBD), were among the most effective catalysts. In the presence of catalytic Cp*RuCl(PPh 3) 2 or Cp*RuCl(COD), primary and secondary azides react with a broad range of terminal alkynes containing a range of functionalities selectively producing 1,5-disubstituted 1,2,3-triazoles; tertiary azides were significantly less reactive. Both complexes also promote the cycloaddition reactions of organic azides with internal alkynes, providing access to fully-substituted 1,2,3-triazoles. The ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) appears to proceed via oxidative coupling of the azide and alkyne reactants to give a six-membered ruthenacycle intermediate, in which the first new carbon-nitrogen bond is formed between the more electronegative carbon of the alkyne and the terminal, electrophilic nitrogen of the azide. This step is followed by reductive elimination, which forms the triazole product. DFT calculations support this mechanistic proposal and indicate that the reductive elimination step is rate-determining.


Science | 2013

Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions.

Brady T. Worrell; J. A. Malik; Valery V. Fokin

How Copper Clicks The copper-catalyzed coupling of azides and alkynes has been termed a “click” reaction on account of its efficiency and versatility, but despite its widespread use, the mechanism remains somewhat unclear. Through a series of kinetic and isotopic labeling studies, Worrell et al. (p. 457, published online 4 April) show that, in the case of terminal alkynes (capped at one end by an H atom), two equivalents of copper participate in activating each molecules reactivity toward azide. Surprisingly, the reaction also appears to proceed through an intermediate in which the two copper centers become equivalent and functionally exchangeable, despite initially coordinating to distinct sites on the alkyne. The mechanism of a common and highly versatile molecular coupling reaction is elucidated. Copper(I)-catalyzed azide-alkyne cycloaddition has become a commonly employed method for the synthesis of complex molecular architectures under challenging conditions. Despite the widespread use of copper-catalyzed cycloaddition reactions, the mechanism of these processes has remained difficult to establish due to the involvement of multiple equilibria between several reactive intermediates. Real-time monitoring of a representative cycloaddition process via heat-flow reaction calorimetry revealed that monomeric copper acetylide complexes are not reactive toward organic azides unless an exogenous copper catalyst is added. Furthermore, crossover experiments with an isotopically enriched exogenous copper source illustrated the stepwise nature of the carbon–nitrogen bond-forming events and the equivalence of the two copper atoms within the cycloaddition steps.


Journal of the American Chemical Society | 2008

Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles

Tony Horneff; Stepan Chuprakov; Natalia Chernyak; Vladimir Gevorgyan; Valery V. Fokin

Stable and readily available 1-sulfonyl triazoles are converted to the corresponding imidazoles in good to excellent yields via a rhodium(II)-catalyzed reaction with nitriles. Rhodium iminocarbenoids are proposed intermediates.


Journal of Biological Chemistry | 1997

Lipoxin A4 Stable Analogs Are Potent Mimetics That Stimulate Human Monocytes and THP-1 Cells via a G-protein-linked Lipoxin A4 Receptor

Jane F. Maddox; Mohamed Hachicha; Tomoko Takano; Nicos A. Petasis; Valery V. Fokin; Charles N. Serhan

Lipoxins (LX) are bioactive eicosanoids that activate human monocytes and inhibit neutrophils. LXA4 is rapidly converted by monocytes to inactive products, and to resist metabolism, synthetic analogs of LXA4 were designed. Here, we examined the bioactivity of several LXA4 analogs in monocytes and found, for chemotaxis, 15(R/S)-methyl-LXA4 and 15-epi-LXA4 were equal in activity, and 16-phenoxy-LXA4 was more potent than native LXA4. Both 15(R/S)-methyl-LXA4 and 16-phenoxy-LXA4 were ∼1 log molar more potent than LXA4 in stimulating THP-1 cell adherence (EC50 ≈ 1 × 10−10 M). Dimethylamide derivatives of the LXA4 analogs also possessed agonist rather than antagonist properties for monocytes. Neither LXA4 nor 16-phenoxy-LXA4 affected monocyte-mediated cytotoxicity. We cloned an LXA4 receptor from THP-1 cells identical to that found in PMN. Evidence of receptor-mediated function of LXA4 and the stable analogs in monocytes included desensitization of intracellular calcium mobilization to a second challenge by equimolar concentrations of these analogs, but not to LTB4. Increases in [Ca2+]i by LXA4 and the analogs were specifically inhibited by an antipeptide antibody to the LXA4 receptor; and both LXA4- and analog-induced adherence and increments in Ca2+ were sensitive to pertussis toxin. Together, these results indicate that the LXA4 stable analogs are potent monocyte chemoattractants and are more potent than native LXA4 in stimulating THP-1 cell adherence, at subnanomolar concentrations. Moreover, they provide additional evidence that the LXA4 stable analogs retain selective bioactivity in monocytes and are valuable instruments for examining the functions and modes of action of LXA4.


Journal of the American Chemical Society | 2009

Rhodium-catalyzed enantioselective cyclopropanation of olefins with N-sulfonyl 1,2,3-triazoles.

Stepan Chuprakov; Sen Wai Kwok; Li Zhang; Lukas Lercher; Valery V. Fokin

N-Sulfonyl 1,2,3-triazoles readily form rhodium(II) azavinyl carbenes, which react with olefins to produce cyclopropanes with excellent diastereo- and enantioselectivity and in high yield.


Organic Letters | 2010

Efficient Synthesis of 1-Sulfonyl-1,2,3-triazoles

Jessica Raushel; Valery V. Fokin

An efficient room-temperature method for the synthesis of 1-sulfonyl-1,2,3-triazoles from in situ generated copper(I) acetylides and sulfonyl azides is described. The copper(I) thiophene-2-carboxylate (CuTC) catalyst produces the title compounds under both nonbasic anhydrous and aqueous conditions in good yields.


Journal of the American Chemical Society | 2013

Transannulation of 1-Sulfonyl-1,2,3-Triazoles with Heterocumulenes

Stepan Chuprakov; Sen Wai Kwok; Valery V. Fokin

Readily available 1-mesyl-1,2,3-triazoles are efficiently converted into a variety of imidazolones and thiazoles by Rh(II)-catalyzed denitrogenative reactions with isocyanates and isothiocyanates, respectively. The proposed triazole-diazoimine equilibrium results in the formation of highly reactive azavinyl metal-carbenes, which react with heterocumulenes causing an apparent swap of 1,2,3-triazole core for another heterocycle.


Journal of the American Chemical Society | 2010

Synthesis and Reactivity of Rhodium(II) N-Triflyl Azavinyl Carbenes

Neil P. Grimster; Li Zhang; Valery V. Fokin

Highly reactive rhodium(II) N-trifluoromethylsulfonyl azavinyl carbenes are formed in situ from NH-1,2,3-triazoles, triflic anhydride, and rhodium carboxylates. They rapidly and selectively react with olefins, providing cyclopropane carboxaldehydes and 2,3-dihydropyrroles in generally excellent yields and high enantio- and diastereoselectivity.

Collaboration


Dive into the Valery V. Fokin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. G. Finn

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Wu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslaw Kalisiak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rakesh K. Sit

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Zrinka Kovarik

University of California

View shared research outputs
Top Co-Authors

Avatar

Stepan Chuprakov

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge