Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rakesh K. Sit is active.

Publication


Featured researches published by Rakesh K. Sit.


Journal of the American Chemical Society | 2014

Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes

Stepan Chuprakov; Brady T. Worrell; Nicklas Selander; Rakesh K. Sit; Valery V. Fokin

Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild, and convergent formal 1,3-insertion into N-H and O-H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bisfunctionalized (Z)-olefins with perfect regio- and stereoselectivity. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition-metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles.


Journal of Biological Chemistry | 2011

New Structural Scaffolds for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases

Rakesh K. Sit; Zoran Radić; Valeria Gerardi; Limin Zhang; Edzna Garcia; Maja Katalinić; Gabriel Amitai; Zrinka Kovarik; Valery V. Fokin; K. Barry Sharpless; Palmer Taylor

We describe here the synthesis and activity of a new series of oxime reactivators of cholinesterases (ChEs) that contain tertiary amine or imidazole protonatable functional groups. Equilibration between the neutral and protonated species at physiological pH enables the reactivators to cross the blood-brain barrier and distribute in the CNS aqueous space as dictated by interstitial and cellular pH values. Our structure-activity analysis of 134 novel compounds considers primarily imidazole aldoximes and N-substituted 2-hydroxyiminoacetamides. Reactivation capacities of novel oximes are rank ordered by their relative reactivation rate constants at 0.67 mm compared with 2-pyridinealdoxime methiodide for reactivation of four organophosphate (sarin, cyclosarin, VX, and paraoxon) conjugates of human acetylcholinesterase (hAChE). Rank order of the rates differs for reactivation of human butyrylcholinesterase (hBChE) conjugates. The 10 best reactivating oximes, predominantly hydroxyimino acetamide derivatives (for hAChE) and imidazole-containing aldoximes (for hBChE) also exhibited reasonable activity in the reactivation of tabun conjugates. Reactivation kinetics of the lead hydroxyimino acetamide reactivator of hAChE, when analyzed in terms of apparent affinity (1/Kox) and maximum reactivation rate (k2), is superior to the reference uncharged reactivators monoisonitrosoacetone and 2,3-butanedione monoxime and shows potential for further refinement. The disparate pH dependences for reactivation of ChE and the general base-catalyzed oximolysis of acetylthiocholine reveal that distinct reactivator ionization states are involved in the reactivation of ChE conjugates and in conferring nucleophilic reactivity of the oxime group.


Journal of Biological Chemistry | 2012

Refinement of Structural Leads for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases

Zoran Radić; Rakesh K. Sit; Zrinka Kovarik; Suzana Berend; Edzna Garcia; Limin Zhang; Gabriel Amitai; Carol E. Green; Božica Radić; Valery V. Fokin; K. Barry Sharpless; Palmer Taylor

Background: Contemporary oxime antidotes to organophosphate poisoning cannot penetrate CNS to reactivate inhibited acetylcholinesterase. Results: Structural, in vitro optimization of ionizable hydroxyiminoacetamido amine acetylcholinesterase reactivators produced superior antidotal responses for VX-, sarin-, paraoxon-, and tabun-exposed mice. Conclusion: Ionizable hydroxyiminoacetamido amines are promising centrally active acetylcholinesterase reactivators. Significance: A mechanism-based iterative refinement of acetylcholinesterase reactivation kinetics coupled with pharmacokinetic analyses yields efficient CNS penetrating antidotes. We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, 1H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.


Chemistry: A European Journal | 2014

Ruthenium‐Catalyzed Cycloadditions of 1‐Haloalkynes with Nitrile Oxides and Organic Azides: Synthesis of 4‐Haloisoxazoles and 5‐Halotriazoles

James S. Oakdale; Rakesh K. Sit; Valery V. Fokin

(Cyclopentadienyl)(cyclooctadiene) ruthenium(II) chloride [CpRuCl(cod)] catalyzes the reaction between nitrile oxides and electronically deficient 1-choro-, 1-bromo-, and 1-iodoalkynes leading to 4-haloisoxazoles. Organic azides are also suitable 1,3-dipoles, resulting in 5-halo-1,2,3-triazoles. These air-tolerant reactions can be performed at room temperature with 1.25 equivalents of the respective 1,3-dipole relative to the alkyne component. Reactive 1-haloalkynes include propiolic amides, esters, ketones, and phosphonates. Post-functionalization of the halogenated azole products can be accomplished by using palladium-catalyzed cross-coupling reactions and by manipulation of reactive amide groups. The lack of catalysis observed with [Cp*RuCl(cod)] (Cp* = pentamethylcyclopentadienyl) is attributed to steric demands of the Cp* (η(5)-C5Me5) ligand in comparison to the parent Cp (η(5)-C5H5). This hypothesis is supported by the poor reactivity of [(η(5)-C5Me4CF3)RuCl(cod)], which serves as a an isosteric mimic of Cp* and as an isoelectronic analogue of Cp.


Chemico-Biological Interactions | 2013

Centrally acting oximes in reactivation of tabun-phosphoramidated AChE.

Zrinka Kovarik; Nikolina Maček; Rakesh K. Sit; Zoran Radić; Valery V. Fokin; K. Barry Sharpless; Palmer Taylor

Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.


Journal of Medicinal Chemistry | 2014

Imidazole Aldoximes Effective in Assisting Butyrylcholinesterase Catalysis of Organophosphate Detoxification

Rakesh K. Sit; Valery V. Fokin; Gabriel Amitai; K. Barry Sharpless; Palmer Taylor; Zoran Radić

Intoxication by organophosphate (OP) nerve agents and pesticides should be addressed by efficient, quickly deployable countermeasures such as antidotes reactivating acetylcholinesterase or scavenging the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural refinement into three efficient reactivators of human butyrylcholinesterase (hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin, VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation of OP–hBChE conjugates by uncharged and nonprotonated tertiary imidazole aldoximes allows the design of a new OP countermeasure by conversion of hBChE from a stoichiometric to catalytic OP bioscavenger with the prospect of oral bioavailability and central nervous system penetration. The enhanced in vitro reactivation efficacy determined for tertiary imidazole aldoximes compared to that of their quaternary N-methyl imidazolium analogues is attributed to ion pairing of the cationic imidazolium with Asp 70, altering a reactive alignment of the aldoxime with the phosphorus in the OP–hBChE conjugate.


Chemical Research in Toxicology | 2015

Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes.

Zrinka Kovarik; Nikolina Maček Hrvat; Maja Katalinić; Rakesh K. Sit; Alexander Paradyse; Suzana Žunec; Kamil Musilek; Valery V. Fokin; Palmer Taylor; Zoran Radić

Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 min when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.


Chemico-Biological Interactions | 2013

Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates

Zoran Radić; Rakesh K. Sit; Edzna Garcia; Limin Zhang; Suzana Berend; Zrinka Kovarik; Gabriel Amitai; Valery V. Fokin; K. Barry Sharpless; Palmer Taylor

A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.


Journal of Pharmacology and Experimental Therapeutics | 2018

Pharmacology, Pharmacokinetics, and Tissue Disposition of Zwitterionic Hydroxyiminoacetamido Alkylamines as Reactivating Antidotes for Organophosphate Exposure

Rakesh K. Sit; Zrinka Kovarik; Nikolina Maček Hrvat; Suzana Žunec; Carol E. Green; Valery V. Fokin; K. Barry Sharpless; Zoran Radić; Palmer Taylor

In the development of antidotal therapy for treatment of organophosphate exposure from pesticides used in agriculture and nerve agents insidiously employed in terrorism, the alkylpyridinium aldoximes have received primary attention since their early development by I. B. Wilson in the 1950s. Yet these agents, by virtue of their quaternary structure, are limited in rates of crossing the blood-brain barrier, and they require administration parenterally to achieve full distribution in the body. Oximes lacking cationic charges or presenting a tertiary amine have been considered as alternatives. Herein, we examine the pharmacokinetic properties of a lead ionizable, zwitterionic hydroxyiminoacetamido alkylamine in mice to develop a framework for studying these agents in vivo and generate sufficient data for their consideration as appropriate antidotes for humans. Consequently, in vitro and in vivo efficacies of immediate structural congeners were explored as leads or backups for animal studies. We compared oral and parenteral dosing, and we developed an intramuscular loading and oral maintenance dosing scheme in mice. Steady-state plasma and brain levels of the antidote were achieved with sequential administrations out to 10 hours, with brain levels exceeding plasma levels shortly after administration. Moreover, the zwitterionic oxime showed substantial protection after gavage, whereas the classic methylpyridinium aldoxime (2-pyridinealdoxime methiodide) was without evident protection. Although further studies in other animal species are necessary, ionizing zwitterionic aldoximes present viable alternatives to existing antidotes for prophylaxis and treatment of large numbers of individuals in terrorist-led events with nerve agent organophosphates, such as sarin, and in organophosphate pesticide exposure.


Book of Abstracts | 2016

Evaluation of a novel centrally active oxime as antidote in OP exposed mice

Suzana Žunec; Zoran Radić; Rakesh K. Sit; Palmer Taylor; Zrinka Kovarik

Collaboration


Dive into the Rakesh K. Sit's collaboration.

Top Co-Authors

Avatar

Valery V. Fokin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zrinka Kovarik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Amitai

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Limin Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge