Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valley Stewart is active.

Publication


Featured researches published by Valley Stewart.


Advances in Microbial Physiology | 1997

Nitrate Assimilation by Bacteria

J T Lin; Valley Stewart

Nitrate is a significant nitrogen source for plants and microorganisms. Recent molecular genetic analyses of representative bacterial species have revealed structural and regulatory genes responsible for the nitrate-assimilation phenotype. Together with results from physiological and biochemical studies, this information has unveiled fundamental aspects of bacterial nitrate assimilation and provides the foundation for further investigations. Well-studied genera are: the cyanobacteria, including the unicellular Synechococcus and the filamentous Anabaena; the gamma-proteobacteria Klebsiella and Azotobacter; and a Gram-positive bacterium, Bacillus. Nitrate uptake in most of these groups seems to involve a periplasmic binding protein-dependent system that presumably is energized by ATP hydrolysis (ATP-binding cassette transporters). However, Bacillus may, like fungi and plants, utilize electrogenic uptake through a representative of the major facilitator superfamily of transport proteins. Nitrate reductase contains both molybdenum cofactor and an iron-sulfur cluster. Electron donors for the enzymes from cyanobacteria and Azotobacter are ferredoxin and flavodoxin, respectively, whereas the Klebsiella and Bacillus enzymes apparently accept electrons from a specific NAD(P)H-reducing subunit. These subunits share sequence similarity with the reductase components of bacterial aromatic ring-hydroxylating dehydrogenases such as toluene dioxygenase. Nitrite reductase contains sirohaem and an iron-sulfur cluster. The enzymes from cyanobacteria and plants use ferredoxin as the electron donor, whereas the larger enzymes from other bacteria and fungi contain FAD and NAD(P)H binding sites. Nevertheless, the two forms of nitrite reductase share recognizable sequence and structural similarity. Synthesis of nitrate assimilation enzymes and uptake systems is controlled by nitrogen limitation in all bacteria examined, but the relevant regulatory proteins exhibit considerable structural and mechanistic diversity in different bacterial groups. A second level of control, pathway-specific induction by nitrate and nitrite in Klebsiella, involves transcription antitermination. Several issues await further experimentation, including the mechanism and energetics of nitrate uptake, the pathway(s) for nitrite uptake, the nature of electron flow during nitrate reduction, and the action of transcriptional regulatory circuits. Fundamental knowledge of nitrate assimilation physiology should also enhance the study of nitrate metabolism in soil, water and other natural environments, a challenging topic of considerable interest and importance.


Molecular Microbiology | 1993

Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli

Valley Stewart

Synthesis of most anaerobic respiratory pathways is subject to dual regulation by anaerobiosis and nitrate. Anaerobic induction is mediated by the FNR protein. Dual interacting two‐component regulatory systems mediate nitrate induction and repression. The response regulator protein NARL binds DNA to control nitrate induction and repression of genes encoding nitrate respiration enzymes and alternate anaerobic respiratory enzymes, respectively. The homologous protein NARP controls nitrite induction of at least two operons. Nitrate and nitrite signalling are both mediated by the homologous sensor proteins NARX and NARQ. Recent mutational analyses have defined a heptamer sequence necessary for specific DNA binding by the NARL protein. These heptamers are located at different positions in the control regions of different operons. The NARL protein‐binding sites in the narG (nitrate reductase) and narK (nitrate‐nitrite antiporter) operon control regions are located approximately 200 bp upstream of the transcription initiation site. The integration host factor (IHF) greatly stimulates nitrate induction of these operons, indicating that a specific DNA loop brings NARL protein, bound at the upstream region, into the proximity of the promoter for transcription activation. Other NARL protein‐dependent operons do not require IHF for nitrate induction, and the arrangement of NARL heptamer sequences in these control regions is quite different. This complexity of signal transduction pathways, coupled with the diversity of control region architecture, combine to provide many interesting areas for future investigation. An additional challenge is to determine how or if the FNR and NARL proteins interact to mediate dual positive control of transcription initiation.


Journal of Bacteriology | 2003

Physiological Studies of Escherichia coli Strain MG1655: Growth Defects and Apparent Cross-Regulation of Gene Expression

Eric Soupene; Wally C. van Heeswijk; Jacqueline Plumbridge; Valley Stewart; Daniel Bertenthal; Haidy Lee; Gyaneshwar Prasad; Oleg Paliy; Parinya Charernnoppakul; Sydney Kustu

Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumarate-nitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.


Journal of Bacteriology | 2002

Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

Valley Stewart; Yiran Lu; Andrew J. Darwin

Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.


Molecular Microbiology | 1997

Differential regulation by the homologous response regulators NarL and NarP of Escherichia coli K‐12 depends on DNA binding site arrangement

Andrew J. Darwin; Kerry L. Tyson; Stephen J. W. Busby; Valley Stewart

The NarL and NarP proteins are homologous response regulators of Escherichia coli that control the expression of several operons in response to nitrate and nitrite. A consensus heptameric NarL DNA‐binding sequence has been identified, and previous observations suggest that the NarP protein has a similar sequence specificity. However, some operons are regulated by NarL alone, whereas others are controlled by both NarL and NarP. In this study, DNase I footprinting experiments with the fdnG, nirB and nrfA control regions revealed that NarP only binds to heptamer sequences organized as an inverted repeat with a 2 bp spacing (7–2–7 sites). The NarL protein also binds to these 7–2–7 sites but, unlike NarP, also recognizes heptamers in other arrangements. These results provide an explanation for the regulation of some operons by NarL alone and for the different effects of NarL and NarP at common target operons, such as fdnG and nrfA. To investigate this differential DNA binding further, derivatives of the nrfA control region were constructed in which the spacing of the 7–2–7 heptamers was increased (7–n–7 constructs). Increasing the spacing to four or more basepairs abolished NarP binding and significantly reduced NarL binding. The NarL protein also had a reduced binding affinity for heptamers adjacent to the 7–n–7 heptamer pair, suggesting a decrease in cooperative interactions. In conclusion, we propose that 7–2–7 sites are preferred by both NarL and NarP. NarL can also recognize other binding site arrangements, an ability that appears to be lacking in NarP.


Molecular Microbiology | 2002

Behaviour of topological marker proteins targeted to the Tat protein transport pathway

Nicola R. Stanley; Frank Sargent; Grant Buchanan; Jiarong Shi; Valley Stewart; Tracy Palmer; Ben C. Berks

The Escherichia coli Tat system mediates Sec‐independent export of protein precursors bearing twin arginine signal peptides. Formate dehydrogenase‐N is a three‐subunit membrane‐bound enzyme, in which localization of the FdnG subunit to the membrane is Tat dependent. FdnG was found in the periplasmic fraction of a mutant lacking the membrane anchor subunit FdnI, confirming that FdnG is located at the periplasmic face of the cytoplasmic membrane. However, the phenotypes of gene fusions between fdnG and the subcellular reporter genes phoA (encoding alkaline phosphatase) or lacZ (encoding β‐galactosidase) were the opposite of those expected for analogous fusions targeted to the Sec translocase. PhoA fusion experiments have previously been used to argue that the peripheral membrane DmsAB subunits of the Tat‐dependent enzyme dimethyl sulphoxide reductase are located at the cytoplasmic face of the inner membrane. Biochemical data are presented that instead show DmsAB to be at the periplasmic side of the membrane. The behaviour of reporter proteins targeted to the Tat system was analysed in more detail. These data suggest that the Tat and Sec pathways differ in their ability to transport heterologous passenger proteins. They also suggest that caution should be observed when using subcellular reporter fusions to determine the topological organization of Tat‐dependent membrane protein complexes.


Journal of Bacteriology | 2003

Mutational Analysis of a Conserved Signal-Transducing Element: the HAMP Linker of the Escherichia coli Nitrate Sensor NarX

J. Alex Appleman; Valley Stewart

The HAMP linker, a predicted structural element observed in sensor proteins from all domains of life, is proposed to transmit signals between extracellular sensory input domains and cytoplasmic output domains. HAMP (histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase) linkers are located just inside the cytoplasmic membrane and are projected to form two short amphipathic alpha-helices (AS-1 and AS-2) joined by an unstructured connector. The presumed helices are comprised of hydrophobic residues in heptad repeats, with only three positions exhibiting strong conservation. We generated missense mutations at these three positions and throughout the HAMP linker in the Escherichia coli nitrate sensor kinase NarX and screened the resulting mutants for defective responses to nitrate. Most missense mutations in this region resulted in a constitutive phenotype mimicking the ligand-bound state, and only one residue (a conserved Glu before AS-2) was essential for HAMP linker function. We also scanned the narX HAMP linker with an overlapping set of seven-residue deletions. Deletions in AS-1 and the connector resulted in constitutive phenotypes. Two deletions in AS-2 resulted in a novel reversed response phenotype in which the response to ligand was the opposite of that seen for the narX(+) strain. These observations are consistent with the proposed HAMP linker structure, show that the HAMP linker plays an active role in transmembrane signal transduction, and indicate that the two amphipathic alpha-helices have different roles in signal transduction.


Journal of Bacteriology | 2003

Probing Conservation of HAMP Linker Structure and Signal Transduction Mechanism through Analysis of Hybrid Sensor Kinases

J. Alex Appleman; Li-Ling Chen; Valley Stewart

The HAMP linker, a predicted structural element observed in many sensor kinases and methyl-accepting chemotaxis proteins, transmits signals between sensory input modules and output modules. HAMP linkers are located immediately inside the cytoplasmic membrane and are predicted to form two short amphipathic alpha-helices (AS-1 and AS-2) joined by an unstructured connector. HAMP linkers are found in the Escherichia coli nitrate- and nitrite-responsive sensor kinases NarX and NarQ (which respond to ligand by increasing kinase activity) and the sensor kinase CpxA (which responds to ligand by decreasing kinase activity). We constructed a series of hybrids with fusion points throughout the HAMP linker, in which the sensory modules of NarX or NarQ are fused to the transmitter modules of NarX, NarQ, or CpxA. A hybrid of the NarX sensor module and the CpxA HAMP linker and transmitter module (NarX-CpxA-1) responded to nitrate by decreasing kinase activity, whereas a hybrid in which the HAMP linker of NarX was replaced by that of CpxA (NarX-CpxA-NarX-1) responded to nitrate by increasing kinase activity. However, sequence variations between HAMP linkers do not allow free exchange of HAMP linkers or their components. Certain deletions in the NarX HAMP linker resulted in characteristic abnormal responses to ligand; similar deletions in the NarQ and NarX-CpxA-1 HAMP linkers resulted in responses to ligand generally similar to those seen in NarX. We conclude that the structure and action of the HAMP linker are conserved and that the HAMP linker transmits a signal to the output domain that ligand is bound.


Molecular Microbiology | 1997

Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12

Stanly B. Williams; Valley Stewart

Anaerobic respiratory gene expression in Escherichia coli is differentially controlled by nitrate and nitrite through dual interacting two‐component regulatory systems. The NarX sensor is one of two membrane‐spanning sensor kinases that control the phosphorylation state of two DNA‐binding response regulators. We have studied NarX autophosphorylation in crude membrane preparations from cells that overexpress NarX protein. The low basal autophosphorylation rate was stimulated about sixfold and threefold by nitrate and nitrite respectively. This demonstrates that nitrate and nitrite differentially activate NarX autokinase activity. We also isolated single‐residue substitutions in NarX that affect its ability to respond to or discriminate between nitrate and nitrite. Most of these substitutions affect residues within the conserved P‐box sequence in the periplasmic domain. We characterized several of the mutants in vivo, by monitoring ligand‐regulated gene expression, and in vitro, by monitoring ligand‐responsive autophosphorylation. At least one change, K49I (Lys at position 49 changed to Ile), resulted in a protein with greatly impaired ability to discriminate between nitrate and nitrite. Other changes (H45E and R59K) resulted in proteins that responded normally to nitrate but were unable to respond to nitrite. These results implicate the P‐box region in discrimination between subtly different small molecules.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX

TuAnh Ngoc Huynh; Chris E. Noriega; Valley Stewart

Two-component signal transduction mediates a wide range of phenotypes in microbes and plants. The sensor transmitter module controls the phosphorylation state of the cognate-response-regulator receiver domain. Whereas the two-component autokinase and phosphotransfer reactions are well-understood, the mechanism by which sensors accelerate the rate of phospho-response regulator dephosphorylation, termed “transmitter phosphatase activity,” is unknown. We identified a conserved DxxxQ motif adjacent to the phospho-accepting His residue in the HisKA_3 subfamily of two-component sensors. We used site-specific mutagenesis to make substitutions for these conserved Gln and Asp residues in the nitrate-responsive NarX sensor and analyzed function both in vivo and in vitro. Results show that the Gln residue is critical for transmitter phosphatase activity, but is not essential for autokinase or phosphotransfer activities. The documented role of an amide moiety in phosphoryl group hydrolysis suggests an analogous catalytic function for this Gln residue in HisKA_3 members. Results also indicate that the Asp residue is important for both autokinase and transmitter phosphatase activities. Furthermore, we noted that sensors of the HisKA subfamily exhibit an analogous E/DxxT/N motif, the conserved Thr residue of which is critical for transmitter phosphatase activity of the EnvZ sensor. Thus, two-component sensors likely use similar mechanisms for receiver domain dephosphorylation.

Collaboration


Dive into the Valley Stewart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Ling Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge