Van Kinh Nguyen
Frankfurt Institute for Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Van Kinh Nguyen.
Viruses | 2015
Alessandro Boianelli; Van Kinh Nguyen; Thomas Ebensen; Kai Schulze; Esther Wilk; Niharika Sharma; Sabine Stegemann-Koniszewski; Dunja Bruder; Franklin R. Toapanta; Carlos A. Guzmán; Michael Meyer-Hermann; Esteban A. Hernandez-Vargas
Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization.
Frontiers in Microbiology | 2015
Van Kinh Nguyen; Sebastian C. Binder; Alessandro Boianelli; Michael Meyer-Hermann; Esteban A. Hernandez-Vargas
The recent outbreaks of Ebola virus (EBOV) infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4), basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently needed to tackle this lethal disease. Mathematical modeling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modeling approach to unravel the interaction between EBOV and the host cells is still missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells by EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parameters in viral infections kinetics is the key contribution of this work, paving the way for future modeling works on EBOV infection.
Scientific Reports | 2016
Stefanie Duvigneau; Niharika Sharma-Chawla; Alessandro Boianelli; Sabine Stegemann-Koniszewski; Van Kinh Nguyen; Dunja Bruder; Esteban A. Hernandez-Vargas
In the course of influenza A virus (IAV) infections, a secondary bacterial infection frequently leads to serious respiratory conditions provoking high hospitalization and death tolls. Although abundant pro-inflammatory responses have been reported as key contributing factors for these severe dual infections, the relative contributions of cytokines remain largely unclear. In the current study, mathematical modelling based on murine experimental data dissects IFN-γ as a cytokine candidate responsible for impaired bacterial clearance, thereby promoting bacterial growth and systemic dissemination during acute IAV infection. We also found a time-dependent detrimental role of IL-6 in curtailing bacterial outgrowth which was not as distinct as for IFN-γ. Our numerical simulations suggested a detrimental effect of IFN-γ alone and in synergism with IL-6 but no conclusive pathogenic effect of IL-6 and TNF-α alone. This work provides a rationale to understand the potential impact of how to manipulate temporal immune components, facilitating the formulation of hypotheses about potential therapeutic strategies to treat coinfections.
PLOS ONE | 2016
Van Kinh Nguyen; Frank Klawonn; Rafael T. Mikolajczyk; Esteban A. Hernandez-Vargas
Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.
Epidemics | 2018
Van Kinh Nguyen; César Parra-Rojas; Esteban A. Hernandez-Vargas
From August to November 2017, Madagascar endured an outbreak of plague. A total of 2417 cases of plague were confirmed, causing a death toll of 209. Public health intervention efforts were introduced and successfully stopped the epidemic at the end of November. The plague, however, is endemic in the region and occurs annually, posing the risk of future outbreaks. To understand the plague transmission, we collected real-time data from official reports, described the outbreaks characteristics, and estimated transmission parameters using statistical and mathematical models. The pneumonic plague epidemic curve exhibited multiple peaks, coinciding with sporadic introductions of new bubonic cases. Optimal climate conditions for rat flea to flourish were observed during the epidemic. Estimate of the plague basic reproduction number during the large wave of the epidemic was high, ranging from 5 to 7 depending on model assumptions. The incubation and infection periods for bubonic and pneumonic plague were 4.3 and 3.4 days and 3.8 and 2.9 days, respectively. Parameter estimation suggested that even with a small fraction of the population exposed to infected rat fleas (1/10,000) and a small probability of transition from a bubonic case to a secondary pneumonic case (3%), the high human-to-human transmission rate can still generate a large outbreak. Controlling rodent and fleas can prevent new index cases, but managing human-to-human transmission is key to prevent large-scale outbreaks.
Journal of Mathematical Biology | 2018
Alexis Erich S. Almocera; Van Kinh Nguyen; Esteban A. Hernandez-Vargas
Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers
bioRxiv | 2018
César Parra-Rojas; Van Kinh Nguyen; Gustavo Hernandez-Mejia; Esteban A. Hernandez-Vargas
Viruses | 2018
César Parra-Rojas; Van Kinh Nguyen; Gustavo Hernandez-Mejia; Esteban A. Hernandez-Vargas
R_0^{W}
BMC Public Health | 2018
Van Kinh Nguyen; Rafael Mikolajczyk; Esteban A. Hernandez-Vargas
bioRxiv | 2017
Van Kinh Nguyen; Esteban A. Hernandez Vargas
R0W and