Vanesa B. Tognetti
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanesa B. Tognetti.
Trends in Plant Science | 2011
Ron Mittler; Sandy Vanderauwera; Nobuhiro Suzuki; Gad Miller; Vanesa B. Tognetti; Klaas Vandepoele; Marty Gollery; Vladimir Shulaev; Frank Van Breusegem
Reactive oxygen species (ROS) play a multitude of signaling roles in different organisms from bacteria to mammalian cells. They were initially thought to be toxic byproducts of aerobic metabolism, but have now been acknowledged as central players in the complex signaling network of cells. In this review, we will attempt to address several key questions related to the use of ROS as signaling molecules in cells, including the dynamics and specificity of ROS signaling, networking of ROS with other signaling pathways, ROS signaling within and across different cells, ROS waves and the evolution of the ROS gene network.
The Plant Cell | 2010
Vanesa B. Tognetti; Olivier Van Aken; Kris Morreel; Korneel Vandenbroucke; Brigitte van de Cotte; Inge De Clercq; Sheila Chiwocha; Ricarda Fenske; Els Prinsen; Wout Boerjan; Bernard Genty; Keith A. Stubbs; Dirk Inzé; Frank Van Breusegem
The hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 from Arabidopsis thaliana is shown to be involved in modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Evidence is provided that, during water stress, IBA and IBA-glucose levels increase, and auxins help maintain the photosynthetic capacity under stress. Reactive oxygen species and redox signaling undergo synergistic and antagonistic interactions with phytohormones to regulate protective responses of plants against biotic and abiotic stresses. However, molecular insight into the nature of this crosstalk remains scarce. We demonstrate that the hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 of Arabidopsis thaliana is involved in the modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Biochemical characterization of recombinant UGT74E2 demonstrated that it strongly favors IBA as a substrate. Assessment of indole-3-acetic acid (IAA), IBA, and their conjugates in transgenic plants ectopically expressing UGT74E2 indicated that the catalytic specificity was maintained in planta. In these transgenic plants, not only were IBA-Glc concentrations increased, but also free IBA levels were elevated and the conjugated IAA pattern was modified. This perturbed IBA and IAA homeostasis was associated with architectural changes, including increased shoot branching and altered rosette shape, and resulted in significantly improved survival during drought and salt stress treatments. Hence, our results reveal that IBA and IBA-Glc are important regulators of morphological and physiological stress adaptation mechanisms and provide molecular evidence for the interplay between hydrogen peroxide and auxin homeostasis through the action of an IBA UGT.
Nature Biotechnology | 2011
Aleksandra Skirycz; Korneel Vandenbroucke; Pieter Clauw; Katrien Maleux; Björn De Meyer; Stijn Dhondt; Anna Pucci; Nathalie Gonzalez; Frank A. Hoeberichts; Vanesa B. Tognetti; Massimo Galbiati; Chiara Tonelli; Frank Van Breusegem; Marnik Vuylsteke; Dirk Inzé
Although drought tolerance is a central concern of plant research, the translatability for crop improvement is relatively low. Here we report on a major contributing factor to this lack of success. Drought tolerance is predominately scored based on an improved survival rate under lethal conditions that, as demonstrated by our study, does not predict superior growth performance and, thus, biomass yield gain, under moderate drought often encountered in the field.
Plant Cell and Environment | 2012
Vanesa B. Tognetti; Per Mühlenbock; Frank Van Breusegem
Under environmental stresses, plant development is adaptively modulated. This modulation is influenced by the steady-state balance (homeostasis) between reactive oxygen species (ROS) and phytohormones. Frequently observed symptoms in plant stress adaptation responses include growth retardation, reduced metabolism and photosynthesis, reallocation of metabolic resources and increased antioxidant activities to maximize plant survival under adverse environmental conditions. In view of stress-induced morphogenetic changes during adaptation, ROS and auxin are the main players in the regulatory networks because both are strongly affected by exposure to environmental cues. However, the mechanisms underlying the crosstalk between ROS and auxin are poorly understood. In this review, we aim at surveying how the integration of environmental stress-related signals is modulated by crosstalk between ROS and auxin regulatory networks.
Plant Journal | 2009
Matias D. Zurbriggen; Néstor Carrillo; Vanesa B. Tognetti; Michael Melzer; Martin Peisker; Bettina Hause; Mohammad-Reza Hajirezaei
Attempted infection of plants by pathogens elicits a complex defensive response. In many non-host and incompatible host interactions it includes the induction of defence-associated genes and a form of localized cell death (LCD), purportedly designed to restrict pathogen advance, collectively known as the hypersensitive response (HR). It is preceded by an oxidative burst, generating reactive oxygen species (ROS) that are proposed to cue subsequent deployment of the HR, although neither the origin nor the precise role played by ROS in the execution of this response are completely understood. We used tobacco plants expressing cyanobacterial flavodoxin to address these questions. Flavodoxin is an electron shuttle present in prokaryotes and algae that, when expressed in chloroplasts, specifically prevents ROS formation in plastids during abiotic stress episodes. Infiltration of tobacco wild-type leaves with high titres of Xanthomonas campestris pv. vesicatoria (Xcv), a non-host pathogen, resulted in ROS accumulation in chloroplasts, followed by the appearance of localized lesions typical of the HR. In contrast, chloroplast ROS build-up and LCD were significantly reduced in Xcv-inoculated plants expressing plastid-targeted flavodoxin. Metabolic routes normally inhibited by pathogens were protected in the transformants, whereas other aspects of the HR, including the induction of defence-associated genes and synthesis of salicylic and jasmonic acid, proceeded as in inoculated wild-type plants. Therefore, ROS generated in chloroplasts during this non-host interaction are essential for the progress of LCD, but do not contribute to the induction of pathogenesis-related genes or other signalling components of the response.
The Plant Cell | 2006
Vanesa B. Tognetti; Javier F. Palatnik; María F. Fillat; Michael Melzer; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo
Chloroplast ferredoxin (Fd) plays a pivotal role in plant cell metabolism by delivering reducing equivalents to various essential oxidoreductive pathways. Fd levels decrease under adverse environmental conditions in many microorganisms, including cyanobacteria, which share a common ancestor with chloroplasts. Conversely, stress situations induce the synthesis of flavodoxin (Fld), an electron carrier flavoprotein not found in plants, which can efficiently replace Fd in most electron transfer processes. We report here that chloroplast Fd also declined in plants exposed to oxidants or stress conditions. A purified cyanobacterial Fld was able to mediate plant Fd-dependent reactions in vitro, including NADP+ and thioredoxin reduction. Tobacco (Nicotiana tabacum) plants expressing Fld in chloroplasts displayed increased tolerance to multiple sources of stress, including redox-cycling herbicides, extreme temperatures, high irradiation, water deficit, and UV radiation. Oxidant buildup and oxidative inactivation of thioredoxin-dependent plastidic enzymes were decreased in stressed plants expressing plastid-targeted Fld, suggesting that development of the tolerant phenotype relied on productive interaction of this flavoprotein with Fd-dependent oxidoreductive pathways of the host, most remarkably, thioredoxin reduction. The use of Fld provides new tools to investigate the requirements of photosynthesis in planta and to increase plant stress tolerance based on the introduction of a cyanobacterial product that is free from endogenous regulation in higher plants.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Vanesa B. Tognetti; Matias D. Zurbriggen; Eligio N. Morandi; María F. Fillat; Estela M. Valle; Mohammad-Reza Hajirezaei; Néstor Carrillo
Iron limitation affects one-third of the cultivable land on Earth and represents a major concern for agriculture. It causes decline of many photosynthetic components, including the Fe-S protein ferredoxin (Fd), involved in essential oxidoreductive pathways of chloroplasts. In cyanobacteria and some algae, Fd down-regulation under Fe deficit is compensated by induction of an isofunctional electron carrier, flavodoxin (Fld), a flavin mononucleotide-containing protein not found in plants. Transgenic tobacco lines expressing a cyanobacterial Fld in chloroplasts were able to grow in Fe-deficient media that severely compromised survival of WT plants. Fld expression did not improve Fe uptake or mobilization, and stressed transformants elicited a normal deficit response, including induction of ferric-chelate reductase and metal transporters. However, the presence of Fld did prevent decrease of several photosynthetic proteins (but not Fd) and partially protected photosynthesis from inactivation. It also preserved the activation state of enzymes depending on the Fd-thioredoxin pathway, which correlated with higher levels of intermediates of carbohydrate metabolism and the Calvin cycle, as well as increased contents of sucrose, glutamate, and other amino acids. These metabolic routes depend, directly or indirectly, on the provision of reduced Fd. The results indicate that Fld could compensate Fd decline during episodes of Fe deficiency by productively interacting with Fd-dependent pathways of the host, providing fresh genetic resources for the design of plants able to survive in Fe-poor lands.
Plant Physiology | 2006
Ramiro E. Rodriguez; Anabella F. Lodeyro; Hugo O. Poli; Matias D. Zurbriggen; Martin Peisker; Javier F. Palatnik; Vanesa B. Tognetti; Henning Tschiersch; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo
Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 μmol quanta m−2 s−1 displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.
Molecular Plant | 2014
Nasser Sewelam; Nils Jaspert; Katrien Van Der Kelen; Vanesa B. Tognetti; Jessica Schmitz; Henning Frerigmann; Elia Stahl; Jürgen Zeier; Frank Van Breusegem; Veronica G. Maurino
Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.
Trends in Biotechnology | 2008
Matias D. Zurbriggen; Vanesa B. Tognetti; María F. Fillat; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo
Environmental stresses and iron limitation are the primary causes of crop losses worldwide. Engineering strategies aimed at gaining stress tolerance have focused on overexpression of endogenous genes belonging to molecular networks for stress perception or responses. Based on the typical response of photosynthetic microorganisms to stress, an alternative approach has been recently applied with considerable success. Ferredoxin, a stress-sensitive target, was replaced in tobacco chloroplasts by an isofunctional protein, a cyanobacterial flavodoxin, which is absent in plants. Resulting transgenic lines showed wide-range tolerance to drought, chilling, oxidants, heat and iron starvation. The survival of plants under such adverse conditions would be an enormous agricultural advantage and makes this novel strategy a potentially powerful biotechnological tool for the generation of multiple-tolerant crops in the near future.