Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Martins is active.

Publication


Featured researches published by Vanessa Martins.


Journal of Clinical Oncology | 2008

Phase I Clinical Trial of a Selective Inhibitor of CYP17, Abiraterone Acetate, Confirms That Castration-Resistant Prostate Cancer Commonly Remains Hormone Driven

Gerhardt Attard; Alison Reid; Timothy A. Yap; Florence I. Raynaud; Mitch Dowsett; Sarah Settatree; Mary Barrett; Chris Parker; Vanessa Martins; Elizabeth Folkerd; Jeremy Clark; Colin S. Cooper; Stan B. Kaye; David P. Dearnaley; Gloria Lee; Johann S. de Bono

PURPOSE Studies indicate that castration-resistant prostate cancer (CRPC) remains driven by ligand-dependent androgen receptor (AR) signaling. To evaluate this, a trial of abiraterone acetate-a potent, selective, small-molecule inhibitor of cytochrome P (CYP) 17, a key enzyme in androgen synthesis-was pursued. PATIENTS AND METHODS Chemotherapy-naïve men (n = 21) who had prostate cancer that was resistant to multiple hormonal therapies were treated in this phase I study of once-daily, continuous abiraterone acetate, which escalated through five doses (250 to 2,000 mg) in three-patient cohorts. RESULTS Abiraterone acetate was well tolerated. The anticipated toxicities attributable to a syndrome of secondary mineralocorticoid excess-namely hypertension, hypokalemia, and lower-limb edema-were successfully managed with a mineralocorticoid receptor antagonist. Antitumor activity was observed at all doses; however, because of a plateau in pharmacodynamic effect, 1,000 mg was selected for cohort expansion (n = 9). Abiraterone acetate administration was associated with increased levels of adrenocorticotropic hormone and steroids upstream of CYP17 and with suppression of serum testosterone, downstream androgenic steroids, and estradiol in all patients. Declines in prostate-specific antigen >or= 30%, 50%, and 90% were observed in 14 (66%), 12 (57%), and 6 (29%) patients, respectively, and lasted between 69 to >or= 578 days. Radiologic regression, normalization of lactate dehydrogenase, and improved symptoms with a reduction in analgesic use were documented. CONCLUSION CYP17 blockade by abiraterone acetate is safe and has significant antitumor activity in CRPC. These data confirm that CRPC commonly remains dependent on ligand-activated AR signaling.


Cancer Research | 2008

NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis

Suzanne A. Eccles; Andrew Massey; Florence I. Raynaud; Swee Y. Sharp; Gary Box; Melanie Valenti; Lisa Patterson; Alexis de Haven Brandon; Sharon Gowan; Frances E. Boxall; Wynne Aherne; Martin G. Rowlands; Angela Hayes; Vanessa Martins; Frederique Urban; Kathy Boxall; Chrisostomos Prodromou; Laurence H. Pearl; Karen B. James; Thomas P. Matthews; Kwai-Ming Cheung; Andrew Kalusa; Keith Jones; Edward McDonald; Xavier Barril; Paul Brough; Julie E. Cansfield; Brian W. Dymock; Martin J. Drysdale; Harry Finch

We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. NVP-AUY922 has entered phase I clinical trials.


Journal of Clinical Oncology | 2010

Phase I Clinical Trial of the CYP17 Inhibitor Abiraterone Acetate Demonstrating Clinical Activity in Patients With Castration-Resistant Prostate Cancer Who Received Prior Ketoconazole Therapy

Charles J. Ryan; Matthew R. Smith; Lawrence Fong; Jonathan E. Rosenberg; Philip W. Kantoff; Florence I. Raynaud; Vanessa Martins; Gloria Lee; Thian Kheoh; Jennifer Kim; Arturo Molina; Eric J. Small

PURPOSE Abiraterone acetate is a prodrug of abiraterone, a selective inhibitor of CYP17, the enzyme catalyst for two essential steps in androgen biosynthesis. In castration-resistant prostate cancers (CRPCs), extragonadal androgen sources may sustain tumor growth despite a castrate environment. This phase I dose-escalation study of abiraterone acetate evaluated safety, pharmacokinetics, and effects on steroidogenesis and prostate-specific antigen (PSA) levels in men with CPRC with or without prior ketoconazole therapy. PATIENTS AND METHODS Thirty-three men with chemotherapy-naïve progressive CRPC were enrolled. Nineteen patients (58%) had previously received ketoconazole for CRPC. Bone metastases were present in 70% of patients, and visceral involvement was present in 18%. Three patients (9%) had locally advanced disease without distant metastases. Fasted or fed cohorts received abiraterone acetate doses of 250, 500, 750, or 1,000 mg daily. Single-dose pharmacokinetic analyses were performed before continuous daily dosing. RESULTS Adverse events were predominantly grade 1 or 2. No dose-limiting toxicities were observed. Hypertension (grade 3, 12%) and hypokalemia (grade 3, 6%; grade 4, 3%) were the most frequent serious toxicities and responded to medical management. Confirmed > or = 50% PSA declines at week 12 were seen in 18 (55%) of 33 patients, including nine (47%) of 19 patients with prior ketoconazole therapy and nine (64%) of 14 patients without prior ketoconazole therapy. Substantial declines in circulating androgens and increases in mineralocorticoids were seen with all doses. CONCLUSION Abiraterone acetate was well tolerated and demonstrated activity in CRPC, including in patients previously treated with ketoconazole. Continued clinical study is warranted.


Molecular Cancer Therapeutics | 2007

Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity

Florence Chan; Chongbo Sun; Meg Perumal; Quang-Dé Nguyen; Vassilios Bavetsias; Edward McDonald; Vanessa Martins; Nicola E. Wilsher; Florence I. Raynaud; Melanie Valenti; Sue Eccles; Robert te Poele; Paul Workman; Eric O. Aboagye; Spiros Linardopoulos

The Aurora family of serine/threonine kinases is important for the regulation of centrosome maturation, chromosome segregation, and cytokinesis during mitosis. Overexpression of Aurora kinases in mammalian cells leads to genetic instability and transformation. Increased levels of Aurora kinases have also been linked to a broad range of human tumors. Here, we describe the properties of CCT129202, a representative of a structurally novel series of imidazopyridine small-molecule inhibitors of Aurora kinase activity. This compound showed high selectivity for the Aurora kinases over a panel of other kinases tested and inhibits proliferation in multiple cultured human tumor cell lines. CCT129202 causes the accumulation of human tumor cells with ≥4N DNA content, leading to apoptosis. CCT120202-treated human tumor cells showed a delay in mitosis, abrogation of nocodazole-induced mitotic arrest, and spindle defects. Growth of HCT116 xenografts in nude mice was inhibited after i.p. administration of CCT129202. We show that p21, the cyclin-dependent kinase inhibitor, is induced by CCT129202. Up-regulation of p21 by CCT129202 in HCT116 cells led to Rb hypophosphorylation and E2F inhibition, contributing to a decrease in thymidine kinase 1 transcription. This has facilitated the use of 3′-deoxy-3′[18F]fluorothymidine-positron emission tomography to measure noninvasively the biological activity of the Aurora kinase inhibitor CCT129202 in vivo. [Mol Cancer Ther 2007;6(12):3147–57]


Journal of Medicinal Chemistry | 2010

Imidazo[4,5-b]pyridine Derivatives As Inhibitors of Aurora Kinases: Lead Optimization Studies toward the Identification of an Orally Bioavailable Preclinical Development Candidate

Vassilios Bavetsias; Jonathan M. Large; Chongbo Sun; Nathalie Bouloc; Magda N. Kosmopoulou; Mizio Matteucci; Nicola E. Wilsher; Vanessa Martins; Jóhannes Reynisson; Butrus Atrash; Amir Faisal; Frederique Urban; Melanie Valenti; Alexis de Haven Brandon; Gary Box; Florence I. Raynaud; Paul Workman; Suzanne A. Eccles; Richard Bayliss; Julian Blagg; Spiros Linardopoulos; Edward McDonald

Lead optimization studies using 7 as the starting point led to a new class of imidazo[4,5-b]pyridine-based inhibitors of Aurora kinases that possessed the 1-benzylpiperazinyl motif at the 7-position, and displayed favorable in vitro properties. Cocrystallization of Aurora-A with 40c (CCT137444) provided a clear understanding into the interactions of this novel class of inhibitors with the Aurora kinases. Subsequent physicochemical property refinement by the incorporation of solubilizing groups led to the identification of 3-((4-(6-bromo-2-(4-(4-methylpiperazin-1-yl)phenyl)-3H-imidazo[4,5-b]pyridin-7-yl)piperazin-1-yl)methyl)-5-methylisoxazole (51, CCT137690) which is a potent inhibitor of Aurora kinases (Aurora-A IC(50) = 0.015 +/- 0.003 muM, Aurora-B IC(50) = 0.025 muM, Aurora-C IC(50) = 0.019 muM). Compound 51 is highly orally bioavailable, and in in vivo efficacy studies it inhibited the growth of SW620 colon carcinoma xenografts following oral administration with no observed toxicities as defined by body weight loss.


Clinical Cancer Research | 2012

AT13148 Is a Novel, Oral Multi-AGC Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity

Timothy A. Yap; Mike I. Walton; Kyla Grimshaw; Robert te Poele; Paul D. Eve; Melanie Valenti; Alexis de Haven Brandon; Vanessa Martins; Anna Zetterlund; Simon P. Heaton; Kathrin Heinzmann; Paul S. Jones; Ruth Feltell; Matthias Reule; Steven John Woodhead; Thomas G. Davies; John Lyons; Florence I. Raynaud; Suzanne A. Eccles; Paul Workman; Neil Thomas Thompson; Michelle D. Garrett

Purpose: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component. Experimental Design: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148. Results: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed. Conclusions: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial. Clin Cancer Res; 18(14); 3912–23. ©2012 AACR.


Molecular Cancer Therapeutics | 2011

Enhanced Efficacy of IGF1R Inhibition in Pediatric Glioblastoma by Combinatorial Targeting of PDGFRα/β

Aleksandra Bielen; Lara Perryman; Gary Box; Melanie Valenti; Alexis de Haven Brandon; Vanessa Martins; Alexa Jury; Sergey Popov; Sharon Gowan; Sébastien Jeay; Florence I. Raynaud; Francesco Hofmann; Darren Hargrave; Suzanne A. Eccles; Chris Jones

Pediatric glioblastoma (pGBM), although rare, is one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. We have identified IGF1R to be a potential therapeutic target in pGBM due to gene amplification and high levels of IGF2 expression in some tumor samples, as well as constitutive receptor activation in pGBM cell lines. To evaluate the therapeutic potential of strategies targeting the receptor, we have carried out in vitro and in vivo preclinical studies using the specific IGF1R inhibitor NVP-AEW541. A modest inhibitory effect was seen in vitro, with GI50 values of 5 to 6 μmol/L, and concurrent inhibition of receptor phosphorylation. Specific targeting of IGF1R with short interfering RNA decreased cell viability, diminished downstream signaling through phosphoinositide 3-kinase (PI3K), and induced G1 arrest, effects mimicked by NVP-AEW541, both in the absence and presence of IGF2. Hallmarks of PI3K inhibition were observed after treatment with NVP-AEW541 by expression profiling and Western blot analysis. Phospho–receptor tyrosine kinase (RTK) arrays showed phosphorylation of platelet-derived growth factor receptor (PDGFR) α/β in pGBM cells, suggesting coactivation of an alternative RTK pathway. Treatment of KNS42 with the PDGFR inhibitor imatinib showed additional effects targeting the mitogen-activated protein kinase pathway, and cotreatment of the PDGFR inhibitor imatinib with NVP-AEW541 resulted in a highly synergistic interaction in vitro and increased efficacy after 14 days therapy in vivo compared with either agent alone. These data provide evidence that inhibition of IGF1R, in combination with other targeted agents, may be a useful and novel therapeutic strategy in pGBM. Mol Cancer Ther; 10(8); 1407–18. ©2011 AACR.


Journal of Medicinal Chemistry | 2015

Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP.

Gianni Chessari; Ildiko Maria Buck; James E. H. Day; Philip J. Day; Aman Iqbal; Christopher Norbert Johnson; Edward J. Lewis; Vanessa Martins; Darcey Miller; Michael Reader; David C. Rees; Sharna J. Rich; Emiliano Tamanini; Marc Vitorino; George Ward; Pamela A. Williams; Glyn Williams; Nicola E. Wilsher; Alison Jo-Anne Woolford

Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Dependence of Wilms tumor cells on signaling through insulin-like growth factor 1 in an orthotopic xenograft model targetable by specific receptor inhibition

Aleksandra Bielen; Gary Box; Lara Perryman; Lynn Bjerke; Sergey Popov; Yann Jamin; Alexa Jury; Melanie Valenti; Alexis de Haven Brandon; Vanessa Martins; Vincent Romanet; Sébastien Jeay; Florence I. Raynaud; Francesco Hofmann; Simon P. Robinson; Suzanne A. Eccles; Chris Jones

We have previously demonstrated an increased DNA copy number and expression of IGF1R to be associated with poor outcome in Wilms tumors. We have now tested whether inhibiting this receptor may be a useful therapeutic strategy by using a panel of Wilms tumor cell lines. Both genetic and pharmacological targeting resulted in inhibition of downstream signaling through PI3 and MAP kinases, G1 cell cycle arrest, and cell death, with drug efficacy dependent on the levels of phosphorylated IGF1R. These effects were further associated with specific gene expression signatures reflecting pathway inhibition, and conferred synergistic chemosensitisation to doxorubicin and topotecan. In the in vivo setting, s.c. xenografts of WiT49 cells resembled malignant rhabdoid tumors rather than Wilms tumors. Treatment with an IGF1R inhibitor (NVP-AEW541) showed no discernable antitumor activity and no downstream pathway inactivation. By contrast, Wilms tumor cells established orthotopically within the kidney were histologically accurate and exhibited significantly elevated insulin-like growth factor–mediated signaling, and growth was significantly reduced on treatment with NVP-AEW541 in parallel with signaling pathway ablation. As a result of the paracrine effects of enhanced IGF2 expression in Wilms tumor, this disease may be acutely dependent on signaling through the IGF1 receptor, and thus treatment strategies aimed at its inhibition may be useful in the clinic. Such efficacy may be missed if only standard ectopic models are considered as a result of an imperfect recapitulation of the specific tumor microenvironment.


Cancer Research | 2012

Abstract 928: The novel clinical candidate AT13148 is an oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity and demonstrates a mechanism of action distinct from AKT inhibitors

Timothy A. Yap; Michael I. Walton; Kyla M. Grimshaw; Robert te Poele; Paul D. Eve; Melanie Valenti; Alexis de Haven Brandon; Vanessa Martins; Anna Zetterlund; Simon P. Heaton; Kathrin Heinzmann; Paul Jones; Ruth Feltell; Matthias Reule; Steven John Woodhead; Thomas G. Davies; John Lyons; Florence I. Raynaud; Suzanne A. Eccles; Paul Workman; Neil Thompson; Michelle D. Garrett

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL The AGC kinase AKT is a key component of the phosphatidylinositol 3-kinase (PI3K) pathway, which is frequently deregulated in cancer, making AKT a target of major therapeutic interest. However, PI3K signaling through both AKT-dependent and AKT-independent mechanisms involving other AGC kinases, such as p70S6K, PKA, SGK and ROCK, is important in a range of cancers. Hence, the pharmacological inhibition of these multiple AGC kinases may increase response rates and minimize clinical resistance compared with targeting AKT alone. The clinical drug candidate AT13148 is a multi-AGC kinase, ATP-competitive inhibitor, identified utilizing high-throughput X-ray crystallography and fragment-based lead discovery techniques. Screening of this oral small molecule against a panel of kinases at 10μM revealed >80% inhibition of the structurally related AGC kinases AKT, PKA, ROCK2, p70S6K, MSK, RSK1/2, and SGK. We demonstrate that AT13148 has antiproliferative activity in a range of in vitro models harboring relevant genetic abnormalities, including PTEN, KRAS, PIK3CA and HER2 aberrations. AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK and SGK substrate phosphorylation and induction of apoptosis in both a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects both in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer and PTEN-deficient MES-SA uterine tumor xenografts was demonstrated. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP competitive inhibitors of AKT, is not a therapeutically relevant reactivation step for this compound. We used gene expression microarray studies to characterize the underlying molecular mechanisms of action of AT13148 and the selective AKT inhibitor CCT128930, and observed the induction of upstream regulators including insulin receptor substrate-2 and PIK3IP1 due to compensatory feedback loops, consistent with blockade of AKT signaling. These studies also showed that AT13148 and CCT128930 have distinct molecular effects in cancer cells: AT13148 had a predominant effect on apoptosis genes and caused a greater apoptotic phenotype, while CCT128930 modulated genes in the network regulating cell cycle. This finding emphasizes the functional differences of AT13148 as a multi-AGC kinase inhibitor in contrast to a more AKT-selective inhibitor. In view of the potential mechanistic advantages detailed above, and the potent antitumor activity observed at well tolerated doses against established human tumor xenografts with clinically relevant genetic drivers, the clinical utility of such an AGC kinase inhibitor strategy will now be assessed in a first-in-human Phase I trial of AT13148. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 928. doi:1538-7445.AM2012-928

Collaboration


Dive into the Vanessa Martins's collaboration.

Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Melanie Valenti

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Suzanne A. Eccles

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Edward McDonald

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola E. Wilsher

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Gloria Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Timothy A. Yap

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Angela Hayes

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge