Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Panettieri is active.

Publication


Featured researches published by Vanessa Panettieri.


Physics in Medicine and Biology | 2007

SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems.

Vanessa Panettieri; Berit Wennberg; Giovanna Gagliardi; M. A. Duch; M. Ginjaume; Ingmar Lax

The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm(-3)) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle(3) (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate the dose up to 10%, while in the lung tissue close to the GTV PB algorithms overestimate the dose and the CC underestimates it. When clinically relevant breathing motions are included in the MC simulations, the static calculations with the TPSs still give a relatively accurate estimate of the dose in the GTV. On the other hand, the dose at the periphery of the GTV is overestimated, compared to the static case.


Radiotherapy and Oncology | 2009

AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code penelope

Vanessa Panettieri; Pierre Barsoum; Mathias Westermark; Lorenzo Brualla; Ingmar Lax

BACKGROUND AND PURPOSE In tangential beam treatments accurate dose calculation of the absorbed dose in the build-up region is of major importance, in particular when the target has superficial extension close to the skin. In most analytical treatment planning systems (TPSs) calculations depend on the experimental measurements introduced by the user in which accuracy might be limited by the type of detector employed to perform them. To quantify the discrepancy between analytically calculated and delivered dose in the build-up region, near the skin of a patient, independent Monte Carlo (MC) simulations using the penelope code were performed. Dose distributions obtained with MC simulations were compared with those given by the Pencil Beam Convolution (PBC) algorithm and the Analytical Anisotropic Algorithm (AAA) implemented in the commercial TPS Eclipse. MATERIAL AND METHODS A cylindrical phantom was used to approximate the breast contour of a patient for MC simulations and the TPS. Calculations of the absorbed doses were performed for 6 and 18MV beams for four different angles of incidence: 15 degrees , 30 degrees , 45 degrees and 75 degrees and different field sizes: 3x3cm(2), 10x10cm(2) and 40x40cm(2). Absorbed doses along the phantom central axis were obtained with both the PBC algorithm and the AAA and compared to those estimated by the MC simulations. Additionally, a breast patient case was calculated with two opposed 6MV photon beams using all the aforementioned analytical and stochastic algorithms. RESULTS For the 6MV photon beam in the phantom case, both the PBC algorithm and the AAA tend to underestimate the absorbed dose in the build-up region in comparison to MC results. These differences are clinically irrelevant and are included in a 1mm range. This tendency is also confirmed in the breast patient case. For the 18MV beam the PBC algorithm underestimates the absorbed dose with respect to the AAA. In comparison to MC simulations the PBC algorithm tends to underestimate the dose after the first 2-3mm of tissue for larger angles but seems to be in good agreement for smaller angles. In the first millimetre of depth instead the PBC tends to overestimate the dose for smaller angles and underestimate it for larger angle of incidence. Instead, the AAA overestimates absorbed doses with respect to MC results for all angles of incidence and at all depths. This behaviour seems to be due to the electron contamination model, which is not able to provide accurate absorbed doses in the build-up region. Even for this case the differences are unlikely to be of clinical significance as 18MV is not usually used to treat superficial targets. CONCLUSIONS The PBC algorithm and the AAA implemented in the TPS Eclipse system version 8.0.05, both yield equivalent calculations, after the first 2mm of tissue, of the absorbed dose for 6MV photon beams when a grid size smaller than 5mm is used. When 18MV photon beams are used care should be taken because the results of the AAA are highly dependent on the beam configuration.


Physics in Medicine and Biology | 2008

Chamber-quality factors in 60Co for three plane-parallel chambers for the dosimetry of electrons, protons and heavier charged particles: PENELOPE Monte Carlo simulations.

Vanessa Panettieri; Josep Sempau; Pedro Andreo

The IBA-Scanditronix NACP-02, IBA-Wellhöfer PPC-40 and PPC-05 plane-parallel ionization chambers have been simulated with the Monte Carlo code PENELOPE to obtain their chamber- and quality-dependent factors f(c,Qo) for a (60)Co gamma beam. These are applicable to the determination of k(Q) beam-quality factors for the dosimetry of electron, protons and heavier charged particles beams based on standards of absorbed dose to water. The factor f(c,Q) is equivalent to the product s(w,air)p, but it is not subject to the assumed independence of perturbation factors and stopping power (Sempau et al 2004 Phys. Med. Biol. 49 4427-44). The calculations have been carried out using three different (60)Co source models: a monoenergetic point source, a point source with a realistic (60)Co spectrum and the simulated phase space from a radiotherapy (60)Co unit. Both the detailed geometries of the ionization chambers and of the (60)Co unit have been obtained from the manufacturers. In the case of the NACP-02 chamber, values of f(c,Qo) have been compared with those in the IAEA TRS-398 Code of Practice and from other authors, results being in excellent agreement. The PPC-05 and PPC-40 chambers are of relatively new design, and their values have not been calculated before. Within the estimated uncertainty, computed at the 2sigma level (95% confidence limit), the results for each of the three chambers appear to be independent of the degree of sophistication of the (60)Co source model used. For the NACP-02 chamber this assumption is justified by the excellent agreement between the various models, which occurs at the level of one standard uncertainty. This suggests the possibility of adopting the mean value of the three source models, weighted with the inverse of their corresponding uncertainties, as a better estimate of f(c,Qo). A consequence of the above conclusions is that the estimated uncertainty of k(Q) beam-quality factors of all charged particles referred to (60)Co can potentially be decreased considerably using our approach. For example, the estimated relative standard uncertainty of the denominator of k(Q), given in TRS-398 as 1.6% for plane-parallel ionization chambers, can be reduced to 0.06% for a NACP chamber using the mean value of f(c,Qo) given in this work. Similar reductions could be obtained for the combined standard uncertainty of the k(Q) beam-quality factors of all charged particles, notably electrons.


Journal of Applied Clinical Medical Physics | 2014

Comparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy

Vanessa Panettieri; Ryan L. Smith; Natasha Mason; Jeremy Millar

Publications have reported the benefits of using high‐dose‐rate brachytherapy (HDRB) for the treatment of prostate cancer, since it provides similar biochemical control as other treatments while showing lowest long‐term complications to the organs at risk (OAR). With the inclusion of anatomy‐based inverse planning optimizers, HDRB has the advantage of potentially allowing dose escalation. Among the algorithms used, the Inverse Planning Simulated Annealing (IPSA) optimizer is widely employed since it provides adequate dose coverage, minimizing dose to the OAR, but it is known to generate large dwell times in particular positions of the catheter. As an alternative, the Hybrid Inverse treatment Planning Optimization (HIPO) algorithm was recently implemented in Oncentra Brachytherapy V. 4.3. The aim of this work was to compare, with the aid of radiobiological models, plans obtained with IPSA and HIPO to assess their use in our clinical practice. Thirty patients were calculated with IPSA and HIPO to achieve our departments clinical constraints. To evaluate their performance, dosimetric data were collected: Prostate PTV D90(%),V100(%),V150(%), and V200(%), Urethra D10(%), Rectum D2cc(%), and conformity indices. Additionally tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with the BioSuite software. The HIPO optimization was performed firstly with Prostate PTV (HIPOPTV) and then with Urethra as priority 1 (HIPOurethra). Initial optimization constraints were then modified to see the effects on dosimetric parameters, TCPs, and NTCPs. HIPO optimizations could reduce TCPs up to 10%–20% for all PTVs lower than 74 cm3. For the urethra, IPSA and HIPOurethra provided similar NTCPs for the majority of volume sizes, whereas HIPOPTV resulted in large NTCP values. These findings were in agreement with dosimetric values. By increasing the PTV maximum dose constraints for HIPOurethra plans, TCPs were found to be in agreement with IPSA without affecting the urethral NTCPs. PACS numbers: 87.55.‐x, 87.55.de, 87.55.dh, 87.53.Jw


Clinical Oncology | 2016

Variation in Lung Tumour Breathing Motion between Planning Four-dimensional Computed Tomography and Stereotactic Ablative Radiotherapy Delivery and its Dosimetric Implications: Any Role for Four-dimensional Set-up Verification?

Jeremy Ruben; A. Seeley; Vanessa Panettieri; T. Ackerly

AIMS To investigate variation in tumour breathing motion (TBM) between the planning four-dimensional computed tomograph (4DCT) and treatment itself for primary or secondary lung tumours undergoing stereotactic ablative radiotherapy (SABR). MATERIALS AND METHODS Sixteen consecutive patients underwent planning 4DCT at least 1 week after implantation of a fiducial marker. The maximal extent of breathing motion of the intra-tumoural fiducial was measured at 4DCT and again at delivery of each SABR fraction on the linac using stereoscopic kilovoltage imaging. Displacements of the fiducial beyond planned limits were measured in three dimensions and represented as vectors. Variation in breathing motion between the planning 4DCT and treatment, and between individual SABR fractions was analysed. RESULTS Although TBM at treatment exceeded planned tumour motion limits for at least part of the course for all patients, 31% of patients remained consistently within 1 mm, 50% within 2 mm and 69% consistently within 3 mm of planned parameters. However, 19% of patients experienced TBM variation 5 mm or more beyond planned limits for at least one fraction. For all patients, the median displacement vector at treatment beyond the planned motion envelope was 1.0 mm (mean 2.0 mm, range 0-12.7 mm). Variation in TBM at treatment from 4DCT correlated neither with the magnitude of TBM at 4DCT nor with planning target volume size (rs = 0.13, P = 0.62; rs = 0.02, P = 0.94, respectively). Nor was TBM variation related to tumour type or lobar position (P = 0.35, P = 0.06, respectively). Inter-fraction TBM variation was modest, with an average standard deviation of 1.7 mm (0.3-8.7 mm). CONCLUSIONS TBM variation between 4DCT and treatment and between SABR fractions was modest for most patients. However, 19% of patients experienced significant TBM variation that could be clinically relevant for those most severely affected. It seems prudent to carry out on-couch assessment of TBM at each SABR fraction to identify such patients who might benefit from respiratory gating or adaptive radiotherapy to maintain tumour motion within the planned limits.


Medical Physics | 2016

A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking

Ryan L. Smith; Annette Haworth; Vanessa Panettieri; Jeremy Millar; R. D. Franich

PURPOSE Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. METHODS A phantom study was conducted to establish the resolution and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the (192)Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. RESULTS The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). CONCLUSIONS We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the source position as each dwell was delivered. This approach using a FPD for imaging and source tracking provides a noninvasive method of acquiring extensive information for verification in HDR prostate brachytherapy.


International Journal of Radiation Oncology Biology Physics | 2014

Optimizing collimator margins for isotoxically dose-escalated conformal radiation therapy of non-small cell lung cancer.

S. Warren; Vanessa Panettieri; Niki Panakis; Nicholas Bates; J.F. Lester; Pooja Jain; David Landau; Alan E. Nahum; W. Philip M. Mayles; John D. Fenwick

PURPOSE Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. METHODS AND MATERIALS Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D99) delivered to 99% of the planning target volume (PTV) was determined. RESULTS Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D99, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). CONCLUSIONS For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.


International Journal of Radiation Oncology Biology Physics | 2014

Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

Jeremy Ruben; Ryan L. Smith; Craig M. Lancaster; Matthew Alfred Haynes; Phillip Jones; Vanessa Panettieri

PURPOSE To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. METHODS AND MATERIALS Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. RESULTS Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. CONCLUSIONS Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide.


Journal of Thoracic Disease | 2016

Limiting the risk of cardiac toxicity with esophageal-sparing intensity modulated radiotherapy for locally advanced lung cancers

Katrina Woodford; Vanessa Panettieri; Jeremy Ruben; Sashendra Senthi

BACKGROUND Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). METHODS Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. RESULTS IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. CONCLUSIONS Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses.


Journal of Medical Imaging and Radiation Oncology | 2018

Post-operative stereotactic radiotherapy for the treatment of intracranial haemangiopericytoma: ‘A Study of Dose and Outcome’

Rohan Nair; Vanessa Panettieri; Joe H Chang; Michael Dally

This study was performed to assess the relationship between tumour response and radiation dose in equivalent 2 Gy per fraction (EQD2).

Collaboration


Dive into the Vanessa Panettieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig M. Lancaster

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan E. Nahum

Clatterbridge Cancer Centre NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge