Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vania Pereira is active.

Publication


Featured researches published by Vania Pereira.


Forensic Science International-genetics | 2017

Evaluation of the Precision ID Ancestry Panel for crime case work: A SNP typing assay developed for typing of 165 ancestral informative markers

Vania Pereira; Helle Smidt Mogensen; Claus Børsting; Niels Morling

The application of massive parallel sequencing (MPS) methodologies in forensic genetics is promising and it is gradually being implemented in forensic genetic case work. One of the major advantages of these technologies is that several traditional electrophoresis assays can be combined into one single MPS assay. This reduces both the amount of sample used and the time of the investigations. This study assessed the utility of the Precision ID Ancestry Panel (Thermo Fisher Scientific, Waltham, USA) in forensic genetics. This assay was developed for the Ion Torrent PGM™ System and genotypes 165 ancestry informative SNPs. The performance of the assay and the accompanying software solution for ancestry inference was assessed by typing 142 Danes and 98 Somalis. Locus balance, heterozygote balance, and noise levels were calculated and future analysis criteria for crime case work were estimated. Overall, the Precision ID Ancestry Panel performed well, and only minor changes to the recommended protocol were implemented. Three out of the 165 loci (rs459920, rs7251928, and rs7722456) had consistently poor performance, mainly due to misalignment of homopolymeric stretches. We suggest that these loci should be excluded from the analyses. The different statistical methods for reporting ancestry in forensic genetic case work are discussed.


PLOS ONE | 2015

Peopling of the North Circumpolar Region – Insights from Y Chromosome STR and SNP Typing of Greenlanders

Jill Olofsson; Vania Pereira; Claus Børsting; Niels Morling

The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.


European Journal of Human Genetics | 2015

The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers

Vania Pereira; Carmen Tomas; Juan J. Sanchez; Denise Syndercombe-Court; António Amorim; Leonor Gusmão; Maria João Prata; Niels Morling

The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.


Forensic Science International-genetics | 2017

Analysis of ancestry informative markers in three main ethnic groups from Ecuador supports a trihybrid origin of Ecuadorians

Roberta Santangelo; Fabricio González-Andrade; Claus Børsting; Antonio Torroni; Vania Pereira; Niels Morling

Ancestry inference is traditionally done using autosomal SNPs that present great allele frequency differences among populations from different geographic regions. These ancestry informative markers (AIMs) are useful for determining the most likely biogeographic ancestry or population of origin of an individual. Due to the growing interest in AIMs and their applicability in different fields, commercial companies have started to develop AIM multiplexes targeted for Massive Parallel Sequencing platforms. This project focused on the study of three main ethnic groups from Ecuador (Kichwa, Mestizo, and Afro-Ecuadorian) using the Precision ID Ancestry panel (Thermo Fisher Scientific). In total, 162 Ecuadorian individuals were investigated. The Afro-Ecuadorian and Mestizo showed higher average genetic diversities compared to the Kichwa. These results are consistent with the highly admixed nature of the first two groups. The Kichwa showed the highest proportion of Native Amerindian (NAM) ancestry relative to the other two groups. The Mestizo had an admixed ancestry of NAM and European with a larger European component, whereas the Afro-Ecuadorian were highly admixed presenting proportions of African, Native Amerindian, and European ancestries. The comparison of our results with previous studies based on uniparental markers (i.e. Y chromosome and mtDNA) highlighted the sex-biased admixture process in the Ecuadorian Mestizo. Overall, the data generated in this work represent one important step to assess the application of ancestry inference in admixed populations in a forensic context.


Forensic Science International-genetics | 2018

Analysis of mainland Japanese and Okinawan Japanese populations using the precision ID Ancestry Panel

Hiroaki Nakanishi; Vania Pereira; Claus Børsting; Toshimichi Yamamoto; Torben Tvedebrink; Masaaki Hara; Aya Takada; Kazuyuki Saito; Niels Morling

We typed 165 AIMs in 49 mainland Japanese and 47 Okinawa Japanese using the Precision ID Ancestry Panel (Thermo Fisher Scientific). None of the 165 SNPs showed significant deviation from Hardy-Weinberg equilibrium in the mainland Japanese. One SNP (rs3943253) showed significant deviation from Hardy-Weinberg equilibrium in Okinawa Japanese. Fishers exact tests showed that the genotype frequencies of 14 loci were significantly different (p<0.05) between the two populations before correction for multiple testing. After Bonferroni correction, only rs671 remained statistically significant (p<0.0003). This SNP is located in the ALDH2 gene. The mutant A allele is associated with increased side effects after alcohol intake. The frequency of the GG genotype (wild type) was higher in the Okinawa Japanese (78.7%) than in mainland Japanese (34.7%; Bonferroni corrected P<0.001). For 31 (63.3%) of the mainland Japanese and 42 (89.4%) of Okinawa Japanese, the highest population likelihood was obtained with the Japanese reference population. However, only in a few individuals, the likelihoods were significantly different from those calculated using reference data from neighboring populations. The likelihoods for mainland Japanese and Okinawa Japanese were not significantly different from each other for any of the investigated individuals. STRUCTURE and PCA analyses showed that mainland Japanese, Okinawa Japanese, and East Asians could not be differentiated with the Precision ID Ancestry Panel.


Molecular Genetics & Genomic Medicine | 2016

Importance of nonsynonymous OCA2 variants in human eye color prediction

Jeppe Dyrberg Andersen; Carlotta Pietroni; Peter Johansen; Mikkel Meyer Andersen; Vania Pereira; Claus Børsting; Niels Morling

The color of the eyes is one of the most prominent phenotypes in humans and it is often used to describe the appearance of an individual. The intensity of pigmentation in the iris is strongly associated with one single‐nucleotide polymorphism (SNP), rs12913832:A>G that is located in the promotor region of OCA2 (OMIM #611409). Nevertheless, many eye colors cannot be explained by only considering rs12913832:A>G.


American Journal of Physical Anthropology | 2016

A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes

Maria Lopopolo; Claus Børsting; Vania Pereira; Niels Morling

OBJECTIVES The Greenlandic population history is characterized by a number of migrations of people of various ethnicities. In this work, the analysis of the complete mtDNA genome aimed to contribute to the ongoing debate on the origin of current Greenlanders and, at the same time, to address the migration patterns in the Greenlandic population from a female inheritance demographic perspective. METHODS We investigated the maternal genetic variation in the Greenlandic population by sequencing the whole mtDNA genome in 127 Greenlandic individuals using the Illumina MiSeq® platform. RESULTS All Greenlandic individuals belonged to the Inuit mtDNA lineages A2a, A2b1, and D4b1a2a1. No European haplogroup was found. DISCUSSION The mtDNA lineages seem to support the hypothesis that the Inuit in Greenland are descendants from the Thule migration. The results also reinforce the importance of isolation and genetic drift in shaping the genetic diversity in Greenlanders. Based on the mtDNA sequences, the Greenlandic Inuit are phylogenetically close to Siberian groups and Canadian Inuit.


BioTechniques | 2014

Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis.

Jeppe Dyrberg Andersen; Vania Pereira; Carlotta Pietroni; Martin Mikkelsen; Peter Johansen; Claus Børsting; Niels Morling

The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72 individuals using only 24 barcoded libraries.


Oncology Letters | 2017

Genomic and immunohistochemical characterisation of a lacrimal gland oncocytoma and review of literature

Lauge Hjorth Mikkelsen; Simon Andreasen; Linea Melchior; Marta Persson; Jeppe Dyrberg Andersen; Vania Pereira; Peter B. Toft; Niels Morling; Göran Stenman; Steffen Heegaard

The aim of the present study was to report the genetic and immunohistochemical profile of a rare case of lacrimal gland oncocytoma. A 20-year-old male underwent magnetic resonance imaging (MRI) due to viral encephalitis. Notably, the MRI revealed a multicystic tumor in the left lacrimal gland. A lateral orbitotomy was performed and the tumor was completely excised. Four months following surgery, the patient was free of symptoms. Histopathologically, the tumor was composed of large, eosinophilic and polyhedral cells with small round nuclei. The tumor cells stained strongly for antimitochondrial antibody MU213-UC, cytokeratin (CK) 5/6, CK 7, CK 17, CK 8/18 and CK 19. The final diagnosis was an oncocytoma of the lacrimal gland without any signs of malignancy. Array-based comparative genomic hybridisation demonstrated a gain of one copy of chromosome 8 and loss of one copy of chromosome 22 as the sole genomic imbalances. These chromosomal alterations have not previously been identified in oncocytoma and may be specific to lacrimal gland oncocytoma. Sequencing of the mitochondrial genome demonstrated multiple alterations of the NADH-ubiquinone oxidoreductase chain 5 (ND5) gene involved in mitochondrial oxidative phosphorylation. This may support the notion of a common genetic background of oncocytic lesions in the lacrimal gland and other anatomical sites.


Electrophoresis | 2018

Sequencing of mitochondrial genomes using the Precision ID mtDNA Whole Genome Panel

Vania Pereira; Antonio Longobardi; Claus Børsting

Massively parallel sequencing offers a fast and cost‐effective method for sequencing of the whole mtDNA genome. The Precision ID mtDNA Whole Genome Panel amplifies the entire mtDNA genome in two multiplex PCRs with 81 primer sets using the Ion AmpliSeq™ technology. In this study, the performance of the panel was evaluated by testing different amplification methods (two‐in‐one or conservative), the number of PCR cycles (21, 23, and 25), and different reaction volumes (recommended volume or half‐volume). Furthermore, a dilution series, controlled mtDNA mixtures, and casework samples were also sequenced. The normalised read depths of the individual fragments were highly consistent irrespectively of the amplification methods or reaction volumes used. The sequencing output matched the mixture ratios of the controlled mtDNA mixtures indicating that the sequencing results were a loyal representation of the input DNA. Complete mtDNA profiles were generated from <10 pg genomic DNA. Seven fragments with relatively low read depths and large variations in read depth were identified. One of these fragments covered part of the control region and the hypervariable region II.

Collaboration


Dive into the Vania Pereira's collaboration.

Top Co-Authors

Avatar

Niels Morling

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Johansen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Carmen Tomas

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

D.M. Truelsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

H. Simayijiang

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge