Vanina E. Alvarez
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanina E. Alvarez.
Journal of Biological Chemistry | 2008
Vanina E. Alvarez; Gregor Kosec; Celso Sant'Anna; Vito Turk; Juan José Cazzulo; Boris Turk
Autophagy is the major mechanism used by eukaryotic cells to degrade and recycle proteins and organelles. Bioinformatics analysis of the genome of the protozoan parasite Trypanosoma cruzi revealed the presence of all components of the Atg8 conjugation system, whereas Atg12, Atg5, and Atg10 as the major components of the Atg12 pathway could not be identified. The two TcATG4 (autophagin) homologs present in the genome were found to correctly process the two ATG8 homologs after the conserved Gly residue. Functional studies revealed that both ATG4 homologues but only one T. cruzi ATG8 homolog (TcATG8.1) complemented yeast deletion strains. During starvation of the parasite, TcAtg8.1, but not TcAtg8.2, was found by immunofluorescence to be located in autophagosome-like vesicles. This confirms its function as an Atg8/LC3 homolog and its potential to be used as an autophagosomal marker. Most importantly, autophagy is involved in differentiation between developmental stages of T. cruzi, a process that is essential for parasite maintenance and survival. These findings suggest that the autophagy pathway could represent a target for a novel chemotherapeutic strategy against Chagas disease.
Biochimica et Biophysica Acta | 2012
Vanina E. Alvarez; Gabriela T. Niemirowicz; Juan José Cazzulo
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, contains cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes is cruzipain, a cysteine proteinase expressed as a mixture of isoforms, some of them membrane-bound. The enzyme is an immunodominant antigen in human chronic Chagas disease and seems to be important in the host/parasite relationship. Inhibitors of cruzipain kill the parasite and cure infected mice, thus validating the enzyme as a very promising target for the development of new drugs against the disease. In addition, a 30kDa cathepsin B-like enzyme, two metacaspases and two autophagins have been described. Serine peptidases described in the parasite include oligopeptidase B, a member of the prolyl oligopeptidase family involved in Ca(2+)-signaling during mammalian cell invasion; a prolyl endopeptidase (Tc80), against which inhibitors are being developed, and a lysosomal serine carboxypeptidase. Metallopeptidases homologous to the gp63 of Leishmania spp. are present, as well as two metallocarboxypeptidases belonging to the M32 family, previously found only in prokaryotes. The proteasome has properties similar to those of other eukaryotes, and its inhibition by lactacystin blocks some differentiation steps in the life cycle of the parasite. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Journal of Biological Chemistry | 2011
Zhu-Hong Li; Vanina E. Alvarez; Javier G. De Gaudenzi; Celso Sant'Anna; Alberto C.C. Frasch; Juan José Cazzulo; Roberto Docampo
Background: Trypanosoma cruzi is subjected to hyperosmotic stress during its life cycle. Results: The recovery from hyperosmotic stress involves the function of an aquaporin, amino acid accumulation, polyphosphate synthesis, and global gene regulation. Conclusion: The response to hyperosmotic stress is different from that observed in mammalian cells or yeasts. Significance: Learning the mechanism of osmoregulation is important for finding new drug targets. The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3′UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance.
Molecular & Cellular Proteomics | 2011
Julio C. Bayona; Ernesto S. Nakayasu; Marc Laverrière; Clemente Aguilar; Tiago J. P. Sobreira; Hyungwon Choi; Alexey I. Nesvizhskii; Igor C. Almeida; Juan José Cazzulo; Vanina E. Alvarez
SUMOylation is a relevant protein post-translational modification in eukaryotes. The C terminus of proteolytically activated small ubiquitin-like modifier (SUMO) is covalently linked to a lysine residue of the target protein by an isopeptide bond, through a mechanism that includes an E1-activating enzyme, an E2-conjugating enzyme, and transfer to the target, sometimes with the assistance of a ligase. The modification is reversed by a protease, also responsible for SUMO maturation. A number of proteins have been identified as SUMO targets, participating in the regulation of cell cycle progression, transcription, translation, ubiquitination, and DNA repair. In this study, we report that orthologous genes corresponding to the SUMOylation pathway are present in the etiological agent of Chagas disease, Trypanosoma cruzi. Furthermore, the SUMOylation system is functionally active in this protozoan parasite, having the requirements for SUMO maturation and conjugation. Immunofluorescence analysis showed that T. cruzi SUMO (TcSUMO) is predominantly found in the nucleus. To identify SUMOylation targets and get an insight into their physiological roles we generated transfectant T. cruzi epimastigote lines expressing a double-tagged T. cruzi SUMO, and SUMOylated proteins were enriched by tandem affinity chromatography. By two-dimensional liquid chromatography-mass spectrometry a total of 236 proteins with diverse biological functions were identified as potential T. cruzi SUMO targets. Of these, metacaspase-3 was biochemically validated as a bona fide SUMOylation substrate. Proteomic studies in other organisms have reported that orthologs of putative T. cruzi SUMOylated proteins are similarly modified, indicating conserved functions for protein SUMOylation in this early divergent eukaryote.
Journal of Biological Chemistry | 2012
Zhu-Hong Li; Javier G. De Gaudenzi; Vanina E. Alvarez; Nicolás Mendiondo; Haiming Wang; Jessica C. Kissinger; Alberto C.C. Frasch; Roberto Docampo
Background: Trypanosoma cruzi regulates gene expression by means of post-transcriptional mechanisms. Results: A 43-nt U-rich element was found in the 3′-UTR of a large number of mRNAs that are more abundant in intracellular amastigotes. Conclusion: The 43-nt U-rich element might be involved in the modulation of abundance and/or translation of transcripts in amastigotes. Significance: Results suggest the existence of stage-specific RNA regulons in T. cruzi. Trypanosoma cruzi, the agent of Chagas disease, does not seem to control gene expression through regulation of transcription initiation and makes use of post-transcriptional mechanisms. We report here a 43-nt U-rich RNA element located in the 3′-untranslated region (3′-UTR) of a large number of T. cruzi mRNAs that is important for mRNA abundance in the intracellular amastigote stage of the parasite. Whole genome scan analysis, differential display RT-PCR, Northern blot, and RT-PCR analyses were used to determine the transcript levels of more than 900 U-rich-containing mRNAs of large gene families as well as single and low copy number genes. Our results indicate that the 43-nt U-rich mRNA element is preferentially present in amastigotes. The cis-element of a protein kinase 3′-UTR but not its mutated version promoted the expression of the green fluorescent protein reporter gene in amastigotes. The regulatory cis-element, but not its mutated version, was also shown to interact with the trypanosome-specific RNA-binding protein (RBP) TcUBP1 but not with other related RBPs. Co-immunoprecipitation experiments of TcUBP1-containing ribonucleoprotein complexes formed in vivo validated the interaction with representative endogenous RNAs having the element. These results suggest that this 43-nt U-rich element together with other yet unidentified sequences might be involved in the modulation of abundance and/or translation of subsets of transcripts in the amastigote stage.
Protein Expression and Purification | 2002
Vanina E. Alvarez; Fabiola Parussini; Lena Åslund; Juan José Cazzulo
Cruzipain, the major cysteine proteinase from Trypanosoma cruzi, is a member of the papain family that contains a C-terminal domain in the mature enzyme, in addition to a catalytic moiety homologous to papain and some mammalian cathepsins. The native enzyme is expressed as a complex mixture of isoforms and has not been crystallized. Previous attempts to express recombinant mature cruzipain containing the C-terminal domain have failed. For this reason, the three-dimensional structure of the complete mature enzyme is not known, although the structure of a recombinant truncated molecule lacking the C-terminal domain (cruzaindeltac) has been determined. We report here the expression of active, N-glycosylated, complete mature cruzipain in an insect cell/baculovirus system. The purified recombinant enzyme, obtained with a yield of about 0.2 mg/100 ml of culture supernatant, has an apparent molecular mass similar, and an identical N-terminal sequence, compared with the native enzyme. The expressed protein is able to process itself by self-proteolysis, leaving the isolated C-terminal domain, and has kinetic properties similar to those of native cruzipain, although some differences in substrate specificity were found. These results open up the possibility of obtaining recombinant intact mature cruzipain of a quality and in quantity suitable for X-ray crystallography.
Cellular Microbiology | 2015
Paula Ana Iribarren; María Agustina Berazategui; Julio C. Bayona; Igor C. Almeida; Juan José Cazzulo; Vanina E. Alvarez
SUMOylation is an important post‐translational modification conserved in eukaryotic organisms. In Trypanosoma brucei, SUMO (Small Ubiquitin‐like MOdifier) is essential in procyclic and bloodstream forms. Furthermore, SUMO has been linked to the antigenic variation process, as a highly SUMOylated focus was recently identified within chromatin‐associated proteins of the active variant surface glycoprotein expression site. We aimed to establish a reliable strategy to identify SUMO conjugates in T. brucei. We expressed various tagged variants of SUMO from the endogenous locus. His‐HA‐TbSUMO was useful to validate the tag functionality but SUMO conjugates were not enriched enough over contaminants after affinity purification. A Lys‐deficient SUMO version, created to reduce contaminants by Lys‐C digestion, was able to overcome this issue but did not allow mapping many SUMOylation sites. This cell line was in turn useful to demonstrate that polySUMO chains are not essential for parasite viability. Finally, a His‐HA‐TbSUMOT106K version allowed the purification of SUMO conjugates and, after digestion with Lys‐C, the enrichment for diGly‐Lys peptides using specific antibodies. This site‐specific proteomic strategy led us to identify 45 SUMOylated proteins and 53 acceptor sites unambiguously. SUMOylated proteins belong mainly to nuclear processes, such as DNA replication and repair, transcription, rRNA biogenesis and chromatin remodelling, among others.
PLOS ONE | 2015
Paula Ana Iribarren; María Agustina Berazategui; Juan José Cazzulo; Vanina E. Alvarez
Post-translational modification with the Small Ubiquitin-like Modifier (SUMO) is conserved in eukaryotic organisms and plays important regulatory roles in proteins affecting diverse cellular processes. In Trypanosoma brucei, member of one of the earliest branches in eukaryotic evolution, SUMO is essential for normal cell cycle progression and is likely to be involved in the epigenetic control of genes crucial for parasite survival, such as those encoding the variant surface glycoproteins. Molecular pathways modulated by SUMO have started to be discovered by proteomic studies; however, characterization of functional consequences is limited to a reduced number of targets. Here we present a bacterial strain engineered to produce SUMOylated proteins, by transferring SUMO from T. brucei together with the enzymes essential for its activation and conjugation. Due to the lack of background in E. coli, this system is useful to express and identify SUMOylated proteins directly in cell lysates by immunoblotting, and SUMOylated targets can be eventually purified for biochemical or structural studies. We applied this strategy to describe the ability of TbSUMO to form chains in vitro and to detect SUMOylation of a model substrate, PCNA both from Saccharomyces cerevisiae and from T. brucei. To further validate targets, we applied an in vitro deconjugation assay using the T. brucei SUMO-specific protease capable to revert the pattern of modification. This system represents a valuable tool for target validation, mutant generation and functional studies of SUMOylated proteins in trypanosomatids.
FEBS Journal | 2018
León A. Bouvier; Gabriela T. Niemirowicz; Emir Salas-Sarduy; Juan José Cazzulo; Vanina E. Alvarez
Metacaspases, distant relatives of metazoan caspases, have been shown to participate in programmed cell death in plants and in progression of the cell cycle and removal of protein aggregates in unicellular eukaryotes. However, since natural proteolytic substrates have scarcely been identified to date, their roles in these processes remain unclear. Here, we report that the DNA‐damage inducible protein 1 (Ddi1) represents a conserved protein substrate for metacaspases belonging to divergent unicellular eukaryotes (trypanosomes and yeasts). We show that although the recognized cleavage sequence is not identical among the different model organisms tested, in all of them the proteolysis consequence is the removal of the ubiquitin‐associated domain (UBA) present in the protein. We also demonstrate that Ddi1 cleavage is tightly regulated in vivo as it only takes place in yeast when calcium increases but under specific metabolic conditions. Finally, we show that metacaspase‐mediated Ddi1 cleavage reduces the stability of this protein which can certainly impact on the many functions ascribed for it, including shuttle to the proteasome, cell cycle control, late secretory pathway regulation, among others.
Scientific Reports | 2018
Emir Salas-Sarduy; Lionel Urán Landaburu; Joel X. Karpiak; Kevin P. Madauss; Juan José Cazzulo; Fernán Agüero; Vanina E. Alvarez
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.