Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanina Ziosi is active.

Publication


Featured researches published by Vanina Ziosi.


BMC Plant Biology | 2013

Transcriptional regulation of flavonoid biosynthesis in nectarine ( Prunus persica ) by a set of R2R3 MYB transcription factors

Daniela Ravaglia; Richard V. Espley; Rebecca A. Henry-Kirk; Carlo Andreotti; Vanina Ziosi; Roger P. Hellens; Guglielmo Costa; Andrew C. Allan

BackgroundFlavonoids such as anthocyanins, flavonols and proanthocyanidins, play a central role in fruit colour, flavour and health attributes. In peach and nectarine (Prunus persica) these compounds vary during fruit growth and ripening. Flavonoids are produced by a well studied pathway which is transcriptionally regulated by members of the MYB and bHLH transcription factor families. We have isolated nectarine flavonoid regulating genes and examined their expression patterns, which suggests a critical role in the regulation of flavonoid biosynthesis.ResultsIn nectarine, expression of the genes encoding enzymes of the flavonoid pathway correlated with the concentration of proanthocyanidins, which strongly increases at mid-development. In contrast, the only gene which showed a similar pattern to anthocyanin concentration was UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT), which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. Expression of flavonol synthase (FLS1) correlated with flavonol levels, both temporally and in a tissue specific manner. The pattern of UFGT gene expression may be explained by the involvement of different transcription factors, which up-regulate flavonoid biosynthesis (MYB10, MYB123, and bHLH3), or repress (MYB111 and MYB16) the transcription of the biosynthetic genes. The expression of a potential proanthocyanidin-regulating transcription factor, MYBPA1, corresponded with proanthocyanidin levels. Functional assays of these transcription factors were used to test the specificity for flavonoid regulation.ConclusionsMYB10 positively regulates the promoters of UFGT and dihydroflavonol 4-reductase (DFR) but not leucoanthocyanidin reductase (LAR). In contrast, MYBPA1 trans-activates the promoters of DFR and LAR, but not UFGT. This suggests exclusive roles of anthocyanin regulation by MYB10 and proanthocyanidin regulation by MYBPA1. Further, these transcription factors appeared to be responsive to both developmental and environmental stimuli.


Journal of Experimental Botany | 2008

Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit

Vanina Ziosi; Claudio Bonghi; Anna Maria Bregoli; Livio Trainotti; Stefania Biondi; Setha Sutthiwal; Satoru Kondo; Guglielmo Costa; Patrizia Torrigiani

Peach (Prunus persica L. Batsch) was chosen as a model to shed light on the physiological role of jasmonates (JAs) during fruit ripening. To this aim, the effects of methyl jasmonate (MJ, 0.40 mM) and propyl dihydrojasmonate (PDJ, 0.22 mM), applied in planta at different fruit developmental stages, on the time-course of ethylene production and fruit quality traits were evaluated. MJ-induced changes in fruit transcriptome at harvest and the expression profiling of relevant JA-responsive genes were analysed in control and JA-treated fruit. Exogenously applied JAs affected the onset of ripening depending upon the fruit developmental stage, with PDJ being more active than MJ. Both compounds enhanced the transcription of allene oxide synthase (PpAOS1), the first specific enzyme in the biosynthesis of jasmonic acid, and altered the pattern of jasmonic acid accumulation. Microarray transcriptome profiling showed that MJ down-regulated some ripening-related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (PpACO1) and polygalacturonase (PG), and the transcriptional modulator IAA7. MJ also altered the expression of cell wall-related genes, namely pectate lyase (PL) and expansins (EXPs), and up-regulated several stress-related genes, including some of those involved in JA biosynthesis. Time-course expression profiles of PpACO1, PL, PG, PpExp1, and the transcription factor LIM confirmed the array results. Thus, in peach fruit, exogenous JAs led to a ripening delay due to an interference with ripening- and stress/defence-related genes, as reflected in the transcriptome of treated fruit at harvest.


Journal of Plant Physiology | 2009

Jasmonate-induced ripening delay is associated with up-regulation of polyamine levels in peach fruit.

Vanina Ziosi; Anna Maria Bregoli; Fabio Fregola; Guglielmo Costa; Patrizia Torrigiani

Methyl jasmonate (MJ, 0.20mM) and its synthetic analog n-propyl dihydrojasmonate (PDJ, 0.22mM) were applied to peach fruit (Prunus persica L. Batsch) at a late developmental stage under field conditions (in planta). On the basis of a previously demonstrated jasmonate (JA)-induced ripening delay in peach, the effects of JAs on the time course of the endogenous polyamine (PA) accumulation and expression of their biosynthetic genes arginine decarboxylase (ADC), ornithine decarboxylase (ODC), spermidine synthase (SPDS) and S-adenosylmethionine decarboxylase (SAMDC) were evaluated in control and JA-treated fruit during the 21-d trial period. In parallel, the main ripening-related parameters (ethylene production, flesh firmness and soluble solids contents) were measured, and transcription profiles of aminocyclopropane-1-carboxylic acid oxidase (PpACO1) and of two ethylene perception genes were evaluated. PDJ, but not MJ, reduced ethylene production and fruit softening, impaired PpACO1 transcription and altered the expression of PpERS1 (ethylene sensor 1), but not the expression of PpETR1 (ethylene receptor 1). In the epicarp and mesocarp, the pattern of PA accumulation was altered in a biphasic manner leading to a higher overall PA level in PDJ-treated fruit. Short and long term increases in putrescine, spermidine and/or spermine, the latter only in the epicarp, were observed in PDJ-treated fruit. MJ induced this behavior only with putrescine in the mesocarp. PpADC transcription was also enhanced soon after the PDJ treatment. Since PDJ-treated fruit were less ripe, their higher PA concentrations in treated fruit are discussed in light of the dual role of these molecules as stress/defense protective compounds and rejuvenating effectors.


Physiologia Plantarum | 2012

Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling.

Patrizia Torrigiani; Daniela Bressanin; Karina B. Ruiz; Alice Tadiello; Livio Trainotti; Claudio Bonghi; Vanina Ziosi; Guglielmo Costa

Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways.


Plant Science | 2003

Auxin and cytokinin modify methyl jasmonate effects on polyamine metabolism and ethylene biosynthesis in tobacco leaf discs

Stefania Biondi; Valeria Scoccianti; Sonia Scaramagli; Vanina Ziosi; Patrizia Torrigiani

Abstract In several in vitro systems, treatment with methyl jasmonate (MJ) stimulates polyamine biosynthesis as well as accumulation of acid-soluble and -insoluble conjugated polyamines. This effect is attributed to changes in gene expression and enzyme activity of arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S -adenosylmethionine decarboxylase (SAMDC). In the present study, we used tobacco ( Nicotiana tabacum L. cv. Samsun) leaf discs to investigate the interaction between this MJ-induced response and those triggered by indole-3-acetic acid (IAA), N 6 -benzyladenine (BA) and ethylene. Our results indicate that MJ-induced accumulation of conjugated polyamines is further stimulated by auxin and counteracted by BA. The MJ-induced stimulation of ODC and SAMDC, but not ADC, mRNA levels was diminished by IAA±BA, whereas the corresponding enzyme activities were further enhanced in the presence of hormones. MJ enhanced ethylene production only when combined with hormones, and this trend was reflected in 1-aminocyclopropane-1-carboxylate oxidase transcript levels. Results suggest that the induction by MJ of conjugated polyamine levels, and of the polyamine biosynthetic genes and activities are differentially modulated by hormones, and that ethylene does not seem to be directly involved in this response.


Journal of Plant Physiology | 2012

Ethylene and auxin biosynthesis and signaling are impaired by methyl jasmonate leading to a transient slowing down of ripening in peach fruit

Alvaro Soto; Karina B. Ruiz; Vanina Ziosi; Guglielmo Costa; Patrizia Torrigiani

Peach (Prunus persica) was chosen as a model to further clarify the physiological role of jasmonates (JAs) during fruit ripening. To this aim, the effect of methyl jasmonate (MJ, 0.88 mM), applied at a late stage (S3) of fruit development under field conditions (in planta), on the time-course of fruit ripening over a 14-day period was evaluated. As revealed by a non-destructive device called a DA-meter, exogenously applied MJ impaired the progression of ripening leading to less ripe fruit at harvest. To better understand the molecular basis of MJ interference with ripening, the time-course changes in the expression of ethylene-, cell wall-, and auxin-related genes as well as other genes (LOX, AOS and bZIP) was evaluated in the fruit mesocarp. Real-time PCR analyses revealed that transcript levels of ethylene-related genes were strongly affected. In a first phase (days 2 and/or 7) of the MJ response, mRNAs of the ethylene biosynthetic genes ACO1, ACS1 and the receptor gene ETR2 were strongly but transiently down-regulated, and then returned to or above control levels in a second phase (days 11 and/or 14). Auxin biosynthetic, conjugating, transport and perception gene transcripts were also affected. While biosynthetic genes (TRPB and IGPS) were up-regulated, auxin-conjugating (GH3), perception (TIR1) and transport (PIN1) genes were transiently but strongly down-regulated in a first phase, but returned to control levels subsequently. Transcript levels of two JA-related genes (LOX, AOS) and a developmentally regulated transcription factor (bZIP) were also affected, suggesting a shift ahead of the ripening process. Thus, in peach fruit, the transient slowing down of ripening by exogenous MJ was associated with an interference not only with ethylene but also with auxin-related genes.


Journal of Plant Physiology | 2003

Peach (Prunus persicaL.) fruit growth and ripening: transcript levels and activity of polyamine biosynthetic enzymes in the mesocarp

Vanina Ziosi; Sonia Scaramagli; Anna Maria Bregoli; Stefania Biondi; Patrizia Torrigiani

Transcript levels and activities of the polyamine biosynthetic enzymes arginine decarboxylase (ADC, EC 4.1.1.19), ornithine decarboxylase (ODC, EC 4.1.1.17) and S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.21), as well as free polyamine titres, were analysed throughout the four growth stages S1-S4 leading up to ripening in the mesocarp from peach fruit (Prunus persica L. Batsch cv. Redhaven) grown under field conditions. SAMDC mRNA, which was northern analysed by using a PCR-generated homologous SAMDC probe, and ADC mRNA levels appeared quite stable during fruit development, while ODC transcript accumulation showed a discontinuous trend. The pattern of transcript levels during growth did not correlate with that of the relative enzyme activity, which instead correlated well with free polyamine levels. Both exhibited maximum levels in S1 and a smaller peak in S3. The behaviour of the polyamine biosynthetic machinery is discussed in relation to the different cell growth rates occurring during fruit development.


BMC Plant Biology | 2016

On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening

Alice Tadiello; Vanina Ziosi; Alfredo Simone Negri; Massimo Noferini; Giovanni Fiori; Nicola Busatto; Luca Espen; Guglielmo Costa; Livio Trainotti

BackgroundIn melting flesh peaches, auxin is necessary for system-2 ethylene synthesis and a cross-talk between ethylene and auxin occurs during the ripening process. To elucidate this interaction at the transition from maturation to ripening and the accompanying switch from system-1 to system-2 ethylene biosynthesis, fruits of melting flesh and stony hard genotypes, the latter unable to produce system-2 ethylene because of insufficient amount of auxin at ripening, were treated with auxin, ethylene and with 1-methylcyclopropene (1-MCP), known to block ethylene receptors. The effects of the treatments on the different genotypes were monitored by hormone quantifications and transcription profiling.ResultsIn melting flesh fruit, 1-MCP responses differed according to the ripening stage. Unexpectedly, 1-MCP induced genes also up-regulated by ripening, ethylene and auxin, as CTG134, similar to GOLVEN (GLV) peptides, and repressed genes also down-regulated by ripening, ethylene and auxin, as CTG85, a calcineurin B-like protein.The nature and transcriptional response of CTG134 led to discover a rise in free auxin in 1-MCP treated fruit. This increase was supported by the induced transcription of CTG475, an IAA-amino acid hydrolase. A melting flesh and a stony hard genotype, differing for their ability to synthetize auxin and ethylene amounts at ripening, were used to study the fine temporal regulation and auxin responsiveness of genes involved in the process. Transcriptional waves showed a tight interdependence between auxin and ethylene actions with the former possibly enhanced by the GLV CTG134. The expression of genes involved in the regulation of ripening, among which are several transcription factors, was similar in the two genotypes or could be rescued by auxin application in the stony hard. Only GLV CTG134 expression could not be rescued by exogenous auxin.Conclusions1-MCP treatment of peach fruit is ineffective in delaying ripening because it stimulates an increase in free auxin. As a consequence, a burst in ethylene production speeding up ripening occurs. Based on a network of gene transcriptional regulations, a model in which appropriate level of CTG134 peptide hormone might be necessary to allow the correct balance between auxin and ethylene for peach ripening to occur is proposed.


7th International Symposium on the Plant Hormone Ethylene | 2007

1-MCP effects on ethylene emission and fruit quality traits of peaches and nectarines

Vanina Ziosi; Anna Maria Bregoli; Giovanni Fiori; Massimo Noferini; Guglielmo Costa

1-methylcyclopropene (1-MCP), an ethylene antagonist, is an effective device to improve the shelf life and quality of fruits, vegetables and ornamentals. It also represents an useful tool in studies aimed at clarifying the ethylene physiology in plants. Peaches and nectarines are climacteric fruits which exhibit a sharp rise in ethylene synthesis at the onset of ripening associated with changes in colour, texture, aroma and other biochemical features. Therefore, treatments with ethylene antagonist such as 1-MCP has been performed for extending post-harvest storage and shelf life of peach fruit. Fruit developmental stage must be considered when applying 1-MCP, as its effects vary with fruit maturity. In fact, the efficacy of 1-MCP treatment decreases with advanced fruit development. In order to study the effects of 1-MCP on peaches and nectarines at different ripening stages, the fruit was divided into homogeneous classes by using a non-destructive technology (NIRs = near-infrared spectroscopy). This technology allowed to correlate the difference of absorbance at two specific wavelengths (DA index) to ethylene emission levels in peach fruit. Immediately after harvest, three groups of fruit were set, with different AD index intervals: the first one included ‘pre-climacteric’ fruit, characterised by very low or undetectable ethylene emission levels, the second one included ‘early-climacteric’ fruit (low ethylene emission levels) and the third one ‘late-climacteric’ fruit (high ethylene emission levels). The fruit of the three classes was treated with 1-MCP (1 μl l) for 12 h at 25°C. Treated and control fruit was then kept at 25°C for about 1 week and the effects on ethylene emission and fruit quality traits (flesh firmness, total soluble solids content, titratable acidity) were evaluated.


Postharvest Biology and Technology | 2008

A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit

Vanina Ziosi; Massimo Noferini; Giovanni Fiori; Alice Tadiello; Livio Trainotti; Giorgio Casadoro; Guglielmo Costa

Collaboration


Dive into the Vanina Ziosi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge