Varsha Pilbrow
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Varsha Pilbrow.
Journal of Anatomy | 2004
Shara E. Bailey; Varsha Pilbrow
Cusp base areas measured from digitized images increase the amount of detailed quantitative information one can collect from post‐canine crown morphology. Although this method is gaining wide usage for taxonomic analyses of extant and extinct hominoids, the techniques for digitizing images and taking measurements differ between researchers. The aim of this study was to investigate interobserver error in order to help assess the reliability of cusp base area measurement within extant and extinct hominoid taxa. Two of the authors measured individual cusp base areas and total cusp base area of 23 maxillary first molars (M1) of Pan. From these, relative cusp base areas were calculated. No statistically significant interobserver differences were found for either absolute or relative cusp base areas. On average the hypocone and paracone showed the least interobserver error (< 1%) whereas the protocone and metacone showed the most (2.6–4.5%). We suggest that the larger measurement error in the metacone/protocone is due primarily to either weakly defined fissure patterns and/or the presence of accessory occlusal features. Overall, levels of interobserver error are similar to those found for intraobserver error. The results of our study suggest that if certain prescribed standards are employed then cusp and crown base areas measured by different individuals can be pooled into a single database.
Journal of Human Evolution | 2010
Varsha Pilbrow
Gorilla patterns of variation have great relevance for studies of human evolution. In this study, molar morphometrics were used to evaluate patterns of geographic variation in gorillas. Dental specimens of 323 adult individuals, drawn from the current distribution of gorillas in equatorial Africa were divided into 14 populations. Discriminant analyses and Mahalanobis distances were used to study population structure. Results reveal that: 1) the West and East African gorillas form distinct clusters, 2) the Cross River gorillas are well separated from the rest of the western populations, 3) gorillas from the Virunga mountains and the Bwindi Forest can be differentiated from the lowland gorillas of Utu and Mwenga-Fizi, 4) the Tshiaberimu gorillas are distinct from other eastern gorillas, and the Kahuzi-Biega gorillas are affiliated with them. These findings provide support for a species distinction between Gorilla gorilla and Gorilla beringei, with subspecies G. g. diehli, G. g. gorilla, G. b. graueri, G. b. beringei, and possibly, G. b. rex-pygmaeorum. Clear correspondence between dental and other patterns of taxonomic diversity demonstrates that dental data reveal underlying genetic patterns of differentiation. Dental distances increased predictably with altitude but not with geographic distances, indicating that altitudinal segregation explains gorilla patterns of population divergence better than isolation-by-distance. The phylogeographic pattern of gorilla dental metric variation supports the idea that Plio-Pleistocene climatic fluctuations and local mountain building activity in Africa affected gorilla phylogeography. I propose that West Africa comprised the historic center of gorilla distribution and experienced drift-gene flow equilibrium, whereas Nigeria and East Africa were at the periphery, where climatic instability and altitudinal variation promoted drift and genetic differentiation. This understanding of gorilla population structure has implications for gorilla conservation, and for understanding the distribution of sympatric chimpanzees and Plio-Pleistocene hominins.
Journal of Anatomy | 2012
Lauren Kallenberger; Varsha Pilbrow
CRANID is a statistical program used to infer the source population of a cranium of unknown origin by comparing its cranial dimensions with a worldwide craniometric database. It has great potential for estimating ancestry in archaeological, forensic and repatriation cases. In this paper we test the validity of CRANID in classifying crania of known geographic origin. Twenty‐three crania of known geographic origin but unknown sex were selected from the osteological collections of the University of Melbourne. Only 18 crania showed good statistical match with the CRANID database. Without considering accuracy of sex allocation, 11 crania were accurately classified into major geographic regions and nine were correctly classified to geographically closest available reference populations. Four of the five crania with poor statistical match were nonetheless correctly allocated to major geographical regions, although none was accurately assigned to geographically closest reference samples. We conclude that if sex allocations are overlooked, CRANID can accurately assign 39% of specimens to geographically closest matching reference samples and 48% to major geographic regions. Better source population representation may improve goodness of fit, but known sex‐differentiated samples are needed to further test the utility of CRANID.
Archive | 2007
Varsha Pilbrow
In studying the nature of variation and determining the taxonomic composition of a hominin fossil assemblage the phylogenetically closest and thus the most relevant modern comparators are Homo and Pan and following these, Gorilla and Pongo. Except for Pan, however, modern hominids lack taxonomic diversity, since by most accounts each one is represented by a single living species. Pan is the sister taxon to modern humans and it is represented by two living species. As such the species of Pan have greater relevance for studying interspecific variation in fossil hominin taxonomy. Despite their relatively impoverished species representations Pan troglodytes, Gorilla gorilla and Pongo pygmaeus are, nevertheless, represented by subspecies. This makes them relevant for studying the nature of intraspecific variation, in particular for addressing the question of subspecies in hominin taxonomy. The aim of this study is to examine the degree and pattern of molar variation in species and subspecies of P. pygmaeus, G. gorilla, P. troglodytes and P. paniscus. I test the hypothesis that measurements taken on the occlusal surface of molars are capable of discriminating between species and subspecies in commingled samples of great apes. The results of this study are used to draw inferences about our ability to differentiate between species and subspecies of fossil hominins. The study samples include P. t. troglodytes (n = 152), P. t. verus (n = 64), P. t. schweinfurthii (n = 79), G. g. gorilla (n = 208), G. g. graueri (n = 61), G. g. beringei (n = 30), P. p. pygmaeus (n = 140), and P. p. abelii (n = 25) . Measurements taken from digital images were used to calculate squared Mahalanobis distances between subspecies pairs. Results indicate that molar metrics are successful in differentiating between the genera, species and subspecies of great apes. There was a hierarchical level of differentiation, with the greatest separation between genera, followed by that between species within the genus Pan and finally between subspecies within species. The patterns of molar differentiation showed excellent concordance with the patterns of molecular differentiation, which suggests that molar metrics have a reasonably strong phylogenetic signal. Pan troglodytes troglodytes and P. troglodytes schweinfurthii were separated by the least dental distance. P. troglodytes verus was separated by a greater distance from these two, but on the whole the distances among subspecies of P. troglodytes were less than among subspecies of G. gorilla and P. pygmaeus. The dental distance between G. g. gorilla and G. g. graueri was greater than that observed between P. troglodytes and P. paniscus. With size adjustment intergroup distances between gorilla subspecies were reduced, resulting in distances comparable to subspecies of P. troglodytes. A contrast between size-preserved and size-adjusted analyses reveal that size, sexual dimorphism and shape are significant factors in the patterning of molar variation in great apes. The results of this study have several implications for hominin taxonomy, including identifying subspecies among hominins. These implications are discussed.
PLOS ONE | 2015
Alejandra Ortiz; Varsha Pilbrow; Catalina I. Villamil; Jessica G. Korsgaard; Shara E. Bailey; Terry Harrison
Fossil hylobatids are rare, but are known from late Miocene and Pleistocene sites throughout East Asia. The best-known fossil hylobatid from the Pleistocene of China is a left mandibular fragment with M2-3 (AMNH 18534), recovered from a pit deposit near the village of Yanjinggou in Wanzhou District, Chongqing Province. Matthew and Granger described this specimen in 1923 as a new genus and species, Bunopithecus sericus. Establishing the age of Bunopithecus has proved difficult because the Yanjinggou collection represents a mixed fauna of different ages, but it likely comes from early or middle Pleistocene deposits. Although the Bunopithecus specimen has featured prominently in discussions of hylobatid evolution and nomenclature, its systematic status has never been satisfactorily resolved. The present study reexamines the taxonomic and phylogenetic relationships of Bunopithecus by carrying out a detailed comparative morphometric study of its lower molars in relation to a large sample of modern hylobatids. Our results show that differences in M2 and M3 discriminate extant hylobatids fairly well, at least at the generic level, and that AMNH 18534 is not attributable to Hylobates, Nomascus or Symphalangus. Support for a close relationship between Bunopithecus and Hoolock is more equivocal. In most multivariate analyses, Bunopithecus presents a unique morphological pattern that falls outside the range of variation of any hylobatid taxon, although its distance from the cluster represented by extant hoolocks is relatively small. Our results support the generic distinction of Bunopithecus, which most likely represents an extinct crown hylobatid, and one that may possibly represent the sister taxon to Hoolock.
International Journal of Primatology | 2013
Varsha Pilbrow; Colin P. Groves
Historical climatic events and riverine barriers influence the distribution of primates. The River Congo exerts the most significant influence on primate distribution in equatorial Africa, but the extent to which the inner basin of the Congo provided a refuge against Plio-Pleistocene climatic fluctuation is poorly understood. In this study we use cranial and dental morphometrics to examine how riverine barriers affect population patterns in bonobos (Pan paniscus). Bonobos and chimpanzees (Pan troglodytes) are sister species and share the distinction of being the closest evolutionary relatives of humans, yet comparatively little is known about bonobo morphological diversity. We selected 55 adult bonobo crania with well-preserved postcanine dentitions and divided them into regions separated by the rivers Lukenie, Kasai, Lomami, and Lualaba. We found good discrimination among these regions in cranial and dental metrics, but whereas the discriminant functions from cranial metrics were statistically significant, the discriminant functions from dental metrics were not. Mean classification accuracy was 89% for craniometrics, and ranged between 72% and 93% for dental metrics. On average 84–97% of phenetic variation was encountered within regions. Our results mirror molecular studies in suggesting that bonobos are characterized by a long-term stable demographic history allowing strong gene flow between regions and precluding drift and population differentiation. There are some indications that the bonobos from the Lomami-Lualaba and the Kasai-Sankuru regions are divergent, but modest sample sizes do not allow us to be conclusive. We would welcome the opportunity to work with field researchers to augment our sample sizes and reanalyze our data.
PLOS ONE | 2017
Peter R Mayall; Varsha Pilbrow; Liana Bitadze
An intentionally modified head is a visually distinctive sign of group identity. In the Migration Period of Europe (4th– 7th century AD) the practice of intentional cranial modification was common among several nomadic groups, but was strongly associated with the Huns from the Carpathian Basin in Hungary, where modified crania are abundant in archaeological sites. The frequency of modified crania increased substantially in the Mtskheta region of Georgia in this time period, but there are no records that Huns settled here. We compare the Migration Period modified skulls from Georgia with those from Hungary to test the hypothesis that the Huns were responsible for cranial modification in Georgia. We use extended eigenshape analysis to quantify cranial outlines, enabling a discriminant analysis to assess group separation and identify morphological differences. Twenty-one intentionally modified skulls from Georgia are compared with sixteen from Hungary, using nineteen unmodified crania from a modern population as a comparative baseline. Results indicate that modified crania can be differentiated from modern unmodified crania with 100% accuracy. The Hungarian and Georgian crania show some overlap in shape, but can be classified with 81% accuracy. Shape gradations along the main eigenvectors indicate that the Hungarian crania show little variation in cranial shape, in accordance with a two-bandage binding technique, whereas the Georgian crania had a wider range of variation, fitting with a diversity of binding styles. As modification style is a strong signifier of social identity, our results indicate weak Hunnic influence on cranial modification in Georgia and are equivocal about the presence of Huns in Georgia. We suggest instead that other nomadic groups such as Alans and Sarmatians living in this region were responsible for modified crania in Georgia.
American Journal of Physical Anthropology | 2018
Peter R Mayall; Varsha Pilbrow
OBJECTIVES The arrival of the Huns into Europe in the fourth century AD increased the occurrence of intentional cranial modification among European nomads. It has been postulated that the Huns used a two-bandage cranial binding technique to differentiate themselves from surrounding nomadic groups, including those from Georgia. This study examines this hypothesis by comparing Migration Period (4th to 7th century AD) juvenile crania, which retain strong impressions of bindings, with adult modified crania from Hungary and Georgia. MATERIALS AND METHODS Twelve surface landmarks and 251 semi-landmarks were used to study ontogenetic trajectories in 9 juvenile and 16 adult modified skulls from 8 Hungarian sites and 21 adult skulls from two Georgian sites. Generalized Procrustes analysis, linear regression of Procrutes distance on dental age and log centroid size, and warping the principal components (PCs) in shape space helped to identify cranial shape changes. RESULTS The PCs provide significant separation of the juvenile and adult groups from Georgia and Hungary. Variation in modified cranial shape was limited in Hungary compared to Georgia. There was stronger correlation between juvenile and adult modified cranial shape in Hungary than in Georgia. Warping along the first axis reveals the trajectory from marked flattening of the frontal and occipital regions in juveniles to diminished flattening in the same regions in adult crania, corresponding with one binding. Another depression extending from the post-bregmatic region to the temporal region, similarly strong in juveniles but diminishing in adults, marks the second binding. DISCUSSION Hungarian crania were modified with two bindings with limited shape variation, whereas the Georgian crania had greater variation in shape being also modified with antero-posterior bindings. The findings from this study alongside contemporary historical sources help to understand the role of intentional cranial modification as a mark of social identity among nomads in the Migration Period of Europe.
Journal of Human Evolution | 2006
Varsha Pilbrow
American Journal of Physical Anthropology | 2006
Varsha Pilbrow