Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasilis G. Moisiadis is active.

Publication


Featured researches published by Vasilis G. Moisiadis.


Nature Reviews Endocrinology | 2014

Glucocorticoids and fetal programming part 1: Outcomes.

Vasilis G. Moisiadis; Stephen G. Matthews

Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic–pituitary–adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.


Endocrinology | 2012

Prenatal Synthetic Glucocorticoid Treatment Changes DNA Methylation States in Male Organ Systems: Multigenerational Effects

Ariann Crudo; Sophie Petropoulos; Vasilis G. Moisiadis; Majid Iqbal; Alisa Kostaki; Ziv Machnes; Moshe Szyf; Stephen G. Matthews

Prenatal synthetic glucocorticoids (sGC) are administered to pregnant women at risk of delivering preterm, approximately 10% of all pregnancies. Animal studies have demonstrated that offspring exposed to elevated glucocorticoids, either by administration of sGC or as a result of maternal stress, are at increased risk of developing behavioral, endocrine, and metabolic abnormalities. DNA methylation is a covalent modification of DNA that plays a critical role in long-lasting programming of gene expression. Here we tested the hypothesis that prenatal sGC treatment has both acute and long-term effects on DNA methylation states in the fetus and offspring and that these effects extend into a subsequent generation. Pregnant guinea pigs were treated with sGC in late gestation, and methylation analysis by luminometric methylation assay was undertaken in organs from fetuses and offspring across two generations. Expression of genes that modify the epigenetic state were measured by quantitative real-time PCR. Results indicate that there are organ-specific developmental trajectories of methylation in the fetus and newborn. Furthermore, these trajectories are substantially modified by intrauterine exposure to sGC. These sGC-induced changes in DNA methylation remain into adulthood and are evident in the next generation. Furthermore, prenatal sGC exposure alters the expression of several genes encoding proteins that modulate the epigenetic state. Several of these changes are long lasting and are also present in the next generation. These data support the hypothesis that prenatal sGC exposure leads to broad changes in critical components of the epigenetic machinery and that these effects can pass to the next generation.


Endocrinology | 2013

Glucocorticoid Programming of the Fetal Male Hippocampal Epigenome

Ariann Crudo; Matthew Suderman; Vasilis G. Moisiadis; Sophie Petropoulos; Alisa Kostaki; Michael Hallett; Moshe Szyf; Stephen G. Matthews

The late-gestation surge in fetal plasma cortisol is critical for maturation of fetal organ systems. As a result, synthetic glucocorticoids (sGCs) are administered to pregnant women at risk of delivering preterm. However, animal studies have shown that fetal exposure to sGC results in increased risk of behavioral, endocrine, and metabolic abnormalities in offspring. Here, we test the hypothesis that prenatal GC exposure resulting from the fetal cortisol surge or after sGC exposure results in promoter-specific epigenetic changes in the hippocampus. Fetal guinea pig hippocampi were collected before (gestational day [GD52]) and after (GD65) the fetal plasma cortisol surge (Term∼GD67) and 24 hours after (GD52) and 14 days after (GD65) two repeat courses of maternal sGC (betamethasone) treatment (n = 3-4/gp). We identified extensive genome-wide alterations in promoter methylation in late fetal development (coincident with the fetal cortisol surge), whereby the majority of the affected promoters exhibited hypomethylation. Fetuses exposed to sGC in late gestation exhibited substantial differences in DNA methylation and histone h3 lysine 9 (H3K9) acetylation in specific gene promoters; 24 hours after the sGC treatment, the majority of genes affected were hypomethylated or hyperacetylated. However, 14 days after sGC exposure these differences did not persist, whereas other promoters became hypermethylated or hyperacetylated. These data support the hypothesis that the fetal GC surge is responsible, in part, for significant variations in genome-wide promoter methylation and that prenatal sGC treatment profoundly changes the epigenetic landscape, affecting both DNA methylation and H3K9 acetylation. This is important given the widespread use of sGC in the management of women in preterm labor.


Endocrinology | 2012

Transgenerational Effects of Prenatal Synthetic Glucocorticoids on Hypothalamic-Pituitary-Adrenal Function

Majid Iqbal; Vasilis G. Moisiadis; Alisa Kostaki; Stephen G. Matthews

Approximately 10% of pregnant women are at risk of preterm delivery and receive synthetic glucocorticoids (sGC) to promote fetal lung development. Studies have indicated that prenatal sGC therapy modifies hypothalamic-pituitary-adrenal (HPA) function in first-generation (F1) offspring. The objective of this study was to determine whether differences in HPA function and behavior are evident in the subsequent (F2) generation. Pregnant guinea pigs (F0) received betamethasone (BETA; 1 mg/kg) or saline on gestational d 40/41, 50/51, and 60/61. F1 females were mated with control males to create F2 offspring. HPA function was assessed in juvenile and adult F2 offspring. Locomotor activity was assessed in juvenile offspring. Analysis of HPA-related gene expression was undertaken in adult hippocampi, hypothalami, and pituitaries. Locomotor activity was reduced in F2 BETA males (P < 0.05). F2 BETA offspring displayed blunted cortisol response to swim stress (P < 0.05). After dexamethasone challenge, F2 BETA males and females displayed increased and decreased negative feedback, respectively. F2 BETA females had reduced pituitary levels of proopiomelanocortin (and adrenocorticotropic hormone), and corticotropin-releasing hormone receptor mRNA and protein (P < 0.05). F2 BETA males displayed increased hippocampal glucocorticoid receptor (P < 0.001), whereas in BETA females, hippocampal glucocorticoid receptor and mineralocorticoid receptor mRNA were decreased (P < 0.05). In conclusion, prenatal BETA treatment affects HPA function and behavior in F2 offspring. In F2 BETA females, pituitary function appears to be primarily affected, whereas hippocampal glucocorticoid feedback systems appear altered in both F2 BETA males and females. These data have clinical implication given the widespread use of repeat course glucocorticoid therapy in the management of preterm labour.


The Journal of Steroid Biochemistry and Molecular Biology | 2016

Programming of stress pathways: A transgenerational perspective.

Andrea Constantinof; Vasilis G. Moisiadis; Stephen G. Matthews

The embryo and fetus are highly responsive to the gestational environment. Glucocorticoids (GC) represent an important class of developmental cues and are crucial for normal brain development. Levels of GC in the fetal circulation are tightly regulated. They are maintained at low levels during pregnancy, and increase rapidly at the end of gestation. This surge in GC is critical for maturation of the organs, specifically the lungs, brain and kidney. There are extensive changes in brain epigenetic profiles that accompany the GC surge, suggesting that GC may drive regulation of gene transcription through altered epigenetic pathways. The epigenetic profiles produced by the GC surge can be prematurely induced as a result of maternal or fetal stress, as well as through exposure to synthetic glucocorticoids (sGC). This is highly clinically relevant as 10% of pregnant women are at risk for preterm labour and receive treatment with sGC to promote lung development in the fetus. Fetal overexposure to GC (including sGC) has been shown to cause lasting changes in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis leading to altered stress responses, and mood and anxiety disorders in humans and animals. In animal models, GC exposure is associated with transcriptomic and epigenomic changes that influence behaviour, HPA function and growth. Importantly, programming by GC results in sex-specific effects that can be inherited over multiple generations via paternal and maternal transmission.


Endocrinology | 2013

Effects of Antenatal Synthetic Glucocorticoid on Glucocorticoid Receptor Binding, DNA Methylation, and Genome-Wide mRNA Levels in the Fetal Male Hippocampus

Ariann Crudo; Sophie Petropoulos; Matthew Suderman; Vasilis G. Moisiadis; Alisa Kostaki; Michael Hallett; Moshe Szyf; Stephen G. Matthews

The endogenous glucocorticoid (GC) surge in late gestation plays a vital role in maturation of several organ systems. For this reason, pregnant women at risk of preterm labor are administered synthetic glucocorticoids (sGCs) to promote fetal lung development. Animal studies have shown that fetal sGC exposure can cause life-long changes in endocrine and metabolic function. We have previously shown that antenatal sGC treatment is associated with alterations in global DNA methylation and modifications to the hippocampal methylome and acetylome. In this study, we hypothesized that: 1) there are changes in the transcriptional landscape of the fetal hippocampus in late gestation, associated with the endogenous cortisol surge; 2) fetal sGC exposure alters genome-wide transcription in the hippocampus; and 3) these changes in transcription are associated with modified glucocorticoid receptor (GR) DNA binding and DNA methylation. sGC was administered as 2 courses on gestational days (GD) 40, 41, 50, and 51, and the hippocampi of fetal guinea pigs were examined before (GD52) and after (GD65) the endogenous cortisol surge (Term ∼GD67). We also analyzed fetal hippocampi 24 hours and 14 days following maternal sGC injections (n = 3-4/group). Genome-wide modification of transcription and GR DNA binding occurred in late gestation, in parallel with the normal GC surge. Further, sGC exposure had a substantial impact on the hippocampal transcriptome, GR-DNA binding, and DNA methylation at 24 hours and 14 days following the final sGC treatment. These data support the hypothesis that GC exposure in late gestation plays a significant role in modifying the transcriptional and epigenetic landscape of the developing fetal hippocampus and that substantial effects are evident for at least 2 weeks after sGC exposure.


PLOS ONE | 2012

Pro-Inflammatory Cytokine Regulation of P-glycoprotein in the Developing Blood-Brain Barrier

Majid Iqbal; Hay Lam Ho; Sophie Petropoulos; Vasilis G. Moisiadis; William Gibb; Stephen G. Matthews

Placental P-glycoprotein (P-gp) acts to protect the developing fetus from exogenous compounds. This protection declines with advancing gestation leaving the fetus and fetal brain vulnerable to these compounds and potential teratogens in maternal circulation. This vulnerability may be more pronounced in pregnancies complicated by infection, which is common during pregnancy. Pro-inflammatory cytokines (released during infection) have been shown to be potent inhibitors of P-gp, but nothing is known regarding their effects at the developing blood-brain barrier (BBB). We hypothesized that P-gp function and expression in endothelial cells of the developing BBB will be inhibited by pro-inflammatory cytokines. We have derived brain endothelial cell (BEC) cultures from various stages of development of the guinea pig: gestational day (GD) 50, 65 (term ∼68 days) and postnatal day (PND) 14. Once these cultures reached confluence, BECs were treated with various doses (100–104 pg/mL) of pro-inflammatory cytokines: interleukin-1β (IL-1β), interleukin-6 (IL-6) or tumor necrosis factor- α (TNF-α). P-gp function or abcb1 mRNA (encodes P-gp) expression was assessed following treatment. Incubation of GD50 BECs with IL-1β, IL-6 or TNF-α resulted in no change in P-gp function. GD65 BECs displayed a dose-dependent decrease in function with all cytokines tested; maximal effects at 42%, 65% and 34% with IL-1β, IL-6 and TNF-α treatment, respectively (P<0.01). Inhibition of P-gp function by IL-1β, IL-6 and TNF-α was even greater in PND14 BECs; maximal effects at 36% (P<0.01), 84% (P<0.05) and 55% (P<0.01), respectively. Cytokine-induced reductions in P-gp function were associated with decreased abcb1 mRNA expression. These data suggest that BBB P-gp function is increasingly responsive to the inhibitory effects of pro-inflammatory cytokines, with increasing developmental age. Thus, women who experience infection and take prescription medication during pregnancy may expose the developing fetal brain to greater amounts of exogenous compounds – many of which are considered potentially teratogenic.


PLOS ONE | 2014

The multidrug resistance 1 gene Abcb1 in brain and placenta: comparative analysis in human and guinea pig.

Jane J. Pappas; Sophie Petropoulos; Matthew Suderman; Majid Iqbal; Vasilis G. Moisiadis; Gustavo Turecki; Stephen G. Matthews; Moshe Szyf

The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.


Scientific Reports | 2017

Prenatal Glucocorticoid Exposure Modifies Endocrine Function and Behaviour for 3 Generations Following Maternal and Paternal Transmission

Vasilis G. Moisiadis; Andrea Constantinof; Alisa Kostaki; Moshe Szyf; Stephen G. Matthews

Fetal exposure to high levels of glucocorticoids programs long-term changes in the physiologic stress response and behaviours. However, it is not known whether effects manifest in subsequent generations of offspring following maternal (MT) or paternal (PT) transmission. We treated pregnant guinea pigs with three courses of saline or synthetic glucocorticoid (sGC) at a clinically relevant dose. Altered cortisol response to stress and behaviours transmitted to juvenile female and male F2 and F3 offspring from both parental lines. Behavioural effects of sGC in F1-F3 PT females associated with altered expression of genes in the prefrontal cortex and hypothalamic paraventricular nucleus (PVN). Exposure to sGC programmed large transgenerational changes in PVN gene expression, including type II diabetes, thermoregulation, and collagen formation gene networks. We demonstrate transgenerational programming to F3 following antenatal sGC. Transmission is sex- and generation-dependent, occurring through both parental lines. Paternal transmission to F3 females strongly implicates epigenetic mechanisms of transmission.


Epigenomics | 2018

The DNA methylation landscape of enhancers in the guinea pig hippocampus

Lisa Boureau; Andrea Constantinof; Vasilis G. Moisiadis; Stephen G. Matthews; Moshe Szyf

AIM To determine the state of methylation of DNA molecules in the guinea pig hippocampus that are associated with either poised or active enhancers. METHODS We used sequential chromatin immunoprecipitation-bisulfite-sequencing with an antibody to H3K4me1 to map the state of methylation of DNA that is found within enhancers. Actively transcribing transcription start sites were mapped by chromatin immunoprecipitation-sequencing with an antibody to RNApolII-PS5. Total DNA methylation was mapped using reduced representation bisulfite sequencing. RESULTS DNA that overlaps with H3K4me1 binding regions in the genome is heavily methylated. However, DNA molecules that are found in H3K4me1 chromatin are hypomethylated, while DNA found in enhancers that are associated with active transcription is further demethylated. Differential methylation in enhancers is spotted in single CGs, bimodal and corresponds to transcription factor binding sites. CONCLUSION Our study delineates the DNA methylation status of H3K4 me1-bound regions in the hippocampus in active and inactive genes.

Collaboration


Dive into the Vasilis G. Moisiadis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Turecki

Douglas Mental Health University Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge