Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vassilis Kitidis is active.

Publication


Featured researches published by Vassilis Kitidis.


Geophysical Research Letters | 2011

Impact of ocean acidification on benthic and water column ammonia oxidation

Vassilis Kitidis; Bonnie Laverock; Louise C. McNeill; Amanda Beesley; Denise Cummings; Karen Tait; Mark A. Osborn; Stephen Widdicombe

Ammonia oxidation is a key microbial process within the marine N-cycle. Sediment and water column samples from two contrasting sites in the English Channel (mud and sand) were incubated (up to 14 weeks) in CO2-acidified seawater ranging from pH 8.0 to pH 6.1. Additional observations were made off the island of Ischia (Mediterranean Sea), a natural analogue site, where long-term thermogenic CO2 ebullition occurs (from pH 8.2 to pH 7.6). Water column ammonia oxidation rates in English Channel samples decreased under low pH with near-complete inhibition at pH 6.5. Water column Ischia samples showed a similar though not statistically significant trend. However, sediment ammonia oxidation rates at all three locations were not affected by reduced pH. These observations may be explained by buffering within sediments or low-pH adaptation of the microbial ammonia oxidizing communities. Our observations have implications for modeling the future impact of ocean acidification on marine ecosystems.


Philosophical Transactions of the Royal Society B | 2013

Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification

Bonnie Laverock; Vassilis Kitidis; Karen Tait; Jack A. Gilbert; A.M. Osborn; Steve Widdicombe

Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79–97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.


Biogeosciences | 2006

Photochemical production of ammonium in the oligotrophic Cyprus Gyre (Eastern Mediterranean)

Vassilis Kitidis; Günther Uher; Robert C. Upstill-Goddard; R.F.C. Mantoura; G. Spyres; E. M. S. Woodward

We investigated the photoproduction of ammonium (NH+4 ) in surface waters of the Cyprus gyre in the central Eastern Mediterranean in May 2002, in 8 on deck irradiations with freshly collected, filtered samples. NH+4 photoproduction (photoammonification) increased with time-integrated irradiance during the course of irradiations. Photoammonification rates around local noon were 0.4–2.9 nmol L −1 h−1. Normalised to time integrated irradiance, these rates were 0.9–3.8 pmol L −1 h−1/(W m−2) and were significantly correlated with Chromophoric Dissolved Organic Matter (CDOM) absorbance at 300 nm normalised to Dissolved Organic Carbon (DOC). These results are consistent with the notion that successive CDOM photobleaching in the surface mixed layer results in decreased DOC-normalised light absorbance concurrent with decreased dissolved organic matter reactivity with regard to photochemical NH+4 release. Combining our experimental data with estimates of annual solar irradiance and water column light attenuation yields an annual photoammonification rate for the Cyprus Gyre of 40 ±17 mmol m−2 a−1, equivalent to ∼12±5 % of the previously estimated annual nitrogen requirement of new production and in the same order of magnitude as atmospheric N deposition in this region. Based on this analysis, NH+4 photoproduction makes a small, but significant contribution to the nitrogen budget of the euphotic zone in the oligotrophic Cyprus Gyre. Correspondence to: V. Kitidis ([email protected])


Global Biogeochemical Cycles | 2012

Biological and physical forcing of carbonate chemistry in an upwelling filament off northwest Africa: Results from a Lagrangian study

Socratis Loucaides; Toby Tyrrell; Eric P. Achterberg; Ricardo Torres; Philip D. Nightingale; Vassilis Kitidis; Pablo Serret; Malcolm Woodward; Carol Robinson

The Mauritanian upwelling system is one of the most biologically productive regions of the worlds oceans. Coastal upwelling transfers nutrients to the sun-lit surface ocean, thereby stimulating phytoplankton growth. Upwelling of deep waters also supplies dissolved inorganic carbon (DIC), high levels of which lead to low calcium carbonate saturation states in surface waters, with potentially adverse effects on marine calcifiers. In this study an upwelled filament off the coast of northwest Africa was followed using drifting buoys and sulphur hexafluoride to determine how the carbonate chemistry changed over time as a result of biological, physical and chemical processes. The initial pHtot in the mixed layer of the upwelled plume was 7.94 and the saturation states of calcite and aragonite were 3.4 and 2.2, respectively. As the plume moved offshore over a period of 9 days, biological uptake of DIC (37 ?mol kg?1) reduced pCO2 concentrations from 540 to 410 ?atm, thereby increasing pHtot to 8.05 and calcite and aragonite saturation states to 4.0 and 2.7 respectively. The increase (25 ?mol kg?1) in total alkalinity over the 9 day study period can be accounted for solely by the combined effects of nitrate uptake and processes that alter salinity (i.e., evaporation and mixing with other water masses). We found no evidence of significant alkalinity accumulation as a result of exudation of organic bases by primary producers. The ongoing expansion of oxygen minimum zones through global warming will likely further reduce the CaCO3 saturation of upwelled waters, amplifying any adverse consequences of ocean acidification on the ecosystem of the Mauritanian upwelling system.


Biogeochemistry | 2017

An approach for the identification of exemplar sites for scaling up targeted field observations of benthic biogeochemistry in heterogeneous environments

C.E.L. Thompson; B. Silburn; M. Williams; T. Hull; D. B. Sivyer; Laurent O. Amoudry; Steve Widdicombe; Jeroen Ingels; G. Carnovale; C. L. McNeill; Rachel Hale; C. Laguionie Marchais; Natalie Hicks; Helen E. K. Smith; J. K. Klar; Jan Geert Hiddink; J. Kowalik; Vassilis Kitidis; S. Reynolds; E. M. S. Woodward; Karen Tait; William B. Homoky; Silke Kröger; Stefan G. Bolam; Jasmin A. Godbold; John Aldridge; Daniel J. Mayor; N. M. A. Benoist; Brian J. Bett; Kirsty J. Morris

Continental shelf sediments are globally important for biogeochemical activity. Quantification of shelf-scale stocks and fluxes of carbon and nutrients requires the extrapolation of observations made at limited points in space and time. The procedure for selecting exemplar sites to form the basis of this up-scaling is discussed in relation to a UK-funded research programme investigating biogeochemistry in shelf seas. A three-step selection process is proposed in which (1) a target area representative of UK shelf sediment heterogeneity is selected, (2) the target area is assessed for spatial heterogeneity in sediment and habitat type, bed and water column structure and hydrodynamic forcing, and (3) study sites are selected within this target area encompassing the range of spatial heterogeneity required to address key scientific questions regarding shelf scale biogeochemistry, and minimise confounding variables. This led to the selection of four sites within the Celtic Sea that are significantly different in terms of their sediment, bed structure, and macrofaunal, meiofaunal and microbial community structures and diversity, but have minimal variations in water depth, tidal and wave magnitudes and directions, temperature and salinity. They form the basis of a research cruise programme of observation, sampling and experimentation encompassing the spring bloom cycle. Typical variation in key biogeochemical, sediment, biological and hydrodynamic parameters over a pre to post bloom period are presented, with a discussion of anthropogenic influences in the region. This methodology ensures the best likelihood of site-specific work being useful for up-scaling activities, increasing our understanding of benthic biogeochemistry at the UK-shelf scale.


Nature Communications | 2015

Both respiration and photosynthesis determine the scaling of plankton metabolism in the oligotrophic ocean.

Pablo Serret; Carol Robinson; María Aranguren-Gassis; Enma Elena García-Martín; Niki Gist; Vassilis Kitidis; José Lozano; J.A. Stephens; Carolyn Harris; Rob Thomas

Despite its importance to ocean–climate interactions, the metabolic state of the oligotrophic ocean has remained controversial for >15 years. Positions in the debate are that it is either hetero- or autotrophic, which suggests either substantial unaccounted for organic matter inputs, or that all available photosynthesis (P) estimations (including 14C) are biased. Here we show the existence of systematic differences in the metabolic state of the North (heterotrophic) and South (autotrophic) Atlantic oligotrophic gyres, resulting from differences in both P and respiration (R). The oligotrophic ocean is neither auto- nor heterotrophic, but functionally diverse. Our results show that the scaling of plankton metabolism by generalized P:R relationships that has sustained the debate is biased, and indicate that the variability of R, and not only of P, needs to be considered in regional estimations of the oceans metabolic state.


Biogeochemistry | 2017

Oxygen dynamics in shelf seas sediments incorporating seasonal variability

Natalie Hicks; G.R. Ubbara; B. Silburn; Helen E. K. Smith; Silke Kröger; E. R. Parker; D. B. Sivyer; Vassilis Kitidis; Angela D. Hatton; Daniel J. Mayor; Henrik Stahl

Shelf sediments play a vital role in global biogeochemical cycling and are particularly important areas of oxygen consumption and carbon mineralisation. Total benthic oxygen uptake, the sum of diffusive and faunal mediated uptake, is a robust proxy to quantify carbon mineralisation. However, oxygen uptake rates are dynamic, due to the diagenetic processes within the sediment, and can be spatially and temporally variable. Four benthic sites in the Celtic Sea, encompassing gradients of cohesive to permeable sediments, were sampled over four cruises to capture seasonal and spatial changes in oxygen dynamics. Total oxygen uptake (TOU) rates were measured through a suite of incubation experiments and oxygen microelectrode profiles were taken across all four benthic sites to provide the oxygen penetration depth and diffusive oxygen uptake (DOU) rates. The difference between TOU and DOU allowed for quantification of the fauna mediated oxygen uptake and diffusive uptake. High resolution measurements showed clear seasonal and spatial trends, with higher oxygen uptake rates measured in cohesive sediments compared to the permeable sediment. The significant differences in oxygen dynamics between the sediment types were consistent between seasons, with increasing oxygen consumption during and after the phytoplankton bloom. Carbon mineralisation in shelf sediments is strongly influenced by sediment type and seasonality.


Scientific Reports | 2017

Pteropods are excellent recorders of surface temperature and carbonate ion concentration

Nina Keul; Katja T. C. A. Peijnenburg; N. Andersen; Vassilis Kitidis; Erica Goetze; R. R. Schneider

Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). Comparison of shell oxygen isotopic composition to depth changes in the calculated aragonite equilibrium oxygen isotope values implies shallow calcification depths for H. inflatus (75 m). This species is therefore a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we identified pteropod shells to be excellent recorders of climate change, as carbonate ion concentration and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a broad distribution and high abundance, make the pteropod species studied here, H. inflatus, a promising new proxy carrier in paleoceanography.


Sensors | 2018

High Resolution pH Measurements Using a Lab-on-Chip Sensor in Surface Waters of Northwest European Shelf Seas

Victoire M.C. Rérolle; Eric P. Achterberg; Mariana Ribas-Ribas; Vassilis Kitidis; Ian Brown; Dorothee C. E. Bakker; Gareth A. Lee; Matthew C. Mowlem

Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in North West European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship’s transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h−1 with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO2) (e.g., pHDICpCO2). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters.


Frontiers in Marine Science | 2017

Characterization of a Time-Domain Dual Lifetime Referencing pCO2 Optode and Deployment as a High-Resolution Underway Sensor across the High Latitude North Atlantic Ocean

Jennifer S. Clarke; Matthew P. Humphreys; Eithne Tynan; Vassilis Kitidis; Ian Brown; Matthew C. Mowlem; Eric P. Achterberg

The ocean is a major sink for anthropogenic carbon dioxide (CO2), with the CO2 uptake causing changes to ocean chemistry. To monitor these changes and provide a chemical background for biological and biogeochemical studies, high quality partial pressure of CO2 (pCO2) sensors are required, with suitable accuracy and precision for ocean measurements. Optodes have the potential to measure in situ pCO2 without the need for wet chemicals or bulky gas equilibration chambers that are typically used in pCO2 systems. However, optodes are still in an early developmental stage compared to more established equilibrator-based pCO2 systems. In this study, we performed a laboratory-based characterization of a time-domain dual lifetime referencing pCO2 optode system. The pCO2 optode spot was illuminated with low intensity light (0.2 mA, 0.72 mW) to minimize spot photobleaching. The spot was calibrated using an experimental gas calibration rig prior to deployment, with a determined response time (τ63) of 50 s at 25°C. The pCO2 optode was deployed as an autonomous shipboard underway system across the high latitude North Atlantic Ocean with a resolution of ca.10 measurements per hour. The optode data was validated with a secondary shipboard equilibrator-based infrared pCO2 instrument, and pCO2 calculated from discrete samples of dissolved inorganic carbon and total alkalinity. Further verification of the pCO2 optode data was achieved using complimentary variables such as nutrients and dissolved oxygen. The shipboard precision of the pCO2 sensor was 9.5 μatm determined both from repeat measurements of certified reference materials and from the standard deviation of seawater measurements while on station. Finally, the optode deployment data was used to evaluate the physical and biogeochemical controls on pCO2.

Collaboration


Dive into the Vassilis Kitidis's collaboration.

Top Co-Authors

Avatar

E. M. S. Woodward

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Brown

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn Harris

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karen Tait

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carol Robinson

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise Cummings

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge