Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Tait is active.

Publication


Featured researches published by Karen Tait.


Fems Microbiology Letters | 2004

The interaction of phage and biofilms.

Ian W. Sutherland; Kevin A. Hughes; Lucy C. Skillman; Karen Tait

Biofilms present complex assemblies of micro-organisms attached to surfaces. they are dynamic structures in which various metabolic activities and interactions between the component cells occur. When phage come in contact with biofilms, further interactions occur dependent on the susceptibility of the biofilm bacteria to phage and to the availability of receptor sites. If the phage also possess polysaccharide-degrading enzymes, or if considerable cell lysis is effected by the phage, the integrity of the biofilm may rapidly be destroyed. Alternatively, coexistence between phage and host bacteria within the biofilm may develop. Although phage have been proposed as a means of destroying or controlling biofilms, the technology for this has not yet been successfully developed.


Philosophical Transactions of the Royal Society B | 2007

Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva

Ian Joint; Karen Tait; Glen L. Wheeler

The green seaweed Ulva has been shown to detect signal molecules produced by bacteria. Biofilms that release N-acylhomoserine lactones (AHLs) attract zoospores—the motile reproductive stages of Ulva. The evidence for AHL involvement is based on several independent lines of evidence, including the observation that zoospores are attracted to wild-type bacteria that produce AHLs but are not attracted to mutants that do not produce signal molecules. Synthetic AHL also attracts zoospores and the attraction is lost in the presence of autoinducer inactivation (AiiA) protein. The mechanism of attraction is not chemotactic but involves chemokinesis. When zoospores detect AHLs, the swimming rate is reduced and this results in accumulation of cells at the source of the AHL. It has been demonstrated that the detection of AHLs results in calcium influx into the zoospore. This is the first example of a calcium signalling event in a eukaryote in response to bacterial quorum sensing molecules. The role of AHLs in the ecology of Ulva is discussed. It is probable that AHLs act as cues for the settlement of zoospores, rather than being directly involved as a signalling mechanism.


Biochemical Society Transactions | 2011

Bioturbation: impact on the marine nitrogen cycle.

Bonnie Laverock; Jack A. Gilbert; Karen Tait; A. Mark Osborn; Steve Widdicombe

Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.


The ISME Journal | 2010

Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments

Bonnie Laverock; Cindy J. Smith; Karen Tait; A. Mark Osborn; Steve Widdicombe; Jack A. Gilbert

Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimps burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment–water interface.


Environmental Microbiology | 2009

Turnover of quorum sensing signal molecules modulates cross-kingdom signalling.

Karen Tait; Holly Williamson; Steve Atkinson; Paul Williams; Miguel Cámara; Ian Joint

N-acylhomoserine lactone (AHL) quorum-sensing molecules modulate the swimming behaviour of zoospores of the macroalga Ulva to facilitate the location of bacterial biofilms. Here we show that the intertidal surfaces colonized by Ulva are dominated by Alphaproteobacteria, particularly the Rhodobacteraceae family, and the Bacteroidetes family Flavobacteriaceae, and that this diverse assemblage both produces and degrades AHLs. N-acylhomoserine lactones could also be extracted from the surfaces of pebbles recovered from intertidal rock-pools. Bacteria representative of this assemblage were isolated and tested for the production and degradation of AHLs, and for their ability to modulate zoospore settlement at different biofilm densities. Of particular interest was a Shewanella sp. This strain produced three major AHLs (OC4, OC10 and OC12) in the late exponential phase, but the longer-chain AHLs were rapidly degraded in the stationary phase. Degradation occurred via both lactonase and amidase activity. A close relationship was found between AHL synthesis and Ulva zoospore settlement. The Shewanella isolate also interfered with AHL production by a Sulfitobacter isolate and its ability to enhance zoospore settlement in a polymicrobial biofilm. This influence on the attachment of Ulva zoospores suggests that AHL-degrading strains can affect bacterial community behaviour by interfering with quorum sensing between neighbouring bacteria. More importantly, these interactions may exert wider ecological effects across different kingdoms.


Geophysical Research Letters | 2011

Impact of ocean acidification on benthic and water column ammonia oxidation

Vassilis Kitidis; Bonnie Laverock; Louise C. McNeill; Amanda Beesley; Denise Cummings; Karen Tait; Mark A. Osborn; Stephen Widdicombe

Ammonia oxidation is a key microbial process within the marine N-cycle. Sediment and water column samples from two contrasting sites in the English Channel (mud and sand) were incubated (up to 14 weeks) in CO2-acidified seawater ranging from pH 8.0 to pH 6.1. Additional observations were made off the island of Ischia (Mediterranean Sea), a natural analogue site, where long-term thermogenic CO2 ebullition occurs (from pH 8.2 to pH 7.6). Water column ammonia oxidation rates in English Channel samples decreased under low pH with near-complete inhibition at pH 6.5. Water column Ischia samples showed a similar though not statistically significant trend. However, sediment ammonia oxidation rates at all three locations were not affected by reduced pH. These observations may be explained by buffering within sediments or low-pH adaptation of the microbial ammonia oxidizing communities. Our observations have implications for modeling the future impact of ocean acidification on marine ecosystems.


Environmental Microbiology Reports | 2010

Quorum sensing signal production and inhibition by coral-associated vibrios.

Karen Tait; Zoe Hutchison; Fabiano L. Thompson; Colin B. Munn

Corals are inhabited by complex communities of microbes that affect their growth and survival. Several studies suggest that coral disease may be attributed to the success of vibrios in out-competing other bacteria in the mucus and tissues of corals. Vibrios utilize a variety of quorum sensing (QS) signal molecules to regulate processes that could be used to colonize corals during adverse environmental conditions. We therefore screened a range of Vibrios isolated from a variety of healthy and diseased corals, for the production of the QS signal molecules, N-acylhomoserine lactones (AHLs) and the AI-2 (autoinducer-2) small furanone signal molecule. All 29 strains examined activated the AI-2 biosensor, but only 17 activated an AHL biosensor. Using reverse phase thin-layer chromatography, we showed that the effect of temperature on AHL production varied considerably among the isolates. For the first time, the QS inhibition by Vibrio harveyi is reported. This only occurred at higher temperatures and does not appear to be due to degradation of AHLs. The large diversity of vibrios and the different effects of temperature on signal production may partly explain the complexity of coral-associated community changes in response to environmental factors.


Microbial Ecology | 2012

Diketopiperazines produced by the Halophilic Archaeon, "Haloterrigena hispanica", activate AHL bioreporters

Giuseppina Tommonaro; Gennaro Roberto Abbamondi; Carmine Iodice; Karen Tait; Salvatore De Rosa

The generic term “quorum sensing” has been adopted to describe the bacterial cell-to-cell communication mechanism which coordinates gene expression when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules that diffuse in and out of bacterial cells. There are few reports about this mechanism in Archaea. We report the isolation and chemical characterization of small molecules belonging to class of diketopiperazines (DKPs) in Haloterrigena hispanica, an extremely halophilic archaeon. One of the DKPs isolated, the compound cyclo-(l-prolyl–l-valine) activated N-acyl homoserine lactone (AHL) bioreporters, indicating that Archaea may have the ability to interact with AHL-producing bacteria within mixed communities.


Philosophical Transactions of the Royal Society B | 2013

Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption

Bayden D. Russell; Sean D. Connell; Helen S. Findlay; Karen Tait; Stephen Widdicombe

Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term.


FEMS Microbiology Ecology | 2014

Disturbance to conserved bacterial communities in the cold water gorgonian coral Eunicella verrucosa

Emma Ransome; Sonia J. Rowley; Simon Thomas; Karen Tait; Colin B. Munn

The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.

Collaboration


Dive into the Karen Tait's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonnie Laverock

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steve Widdicombe

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Miguel Cámara

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Vassilis Kitidis

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ian Joint

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul Williams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Beesley

Plymouth Marine Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge