Vattipally B. Sreenu
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vattipally B. Sreenu.
The Lancet | 2016
Michael Jacobs; Alison Rodger; David J. Bell; Sanjay Bhagani; Ian Cropley; Ana da Silva Filipe; Robert J. Gifford; Susan Hopkins; Joseph Hughes; Farrah Jabeen; Ingolfur Johannessen; Drosos Karageorgopoulos; Angie Lackenby; Rebecca Lester; Rebecca S N Liu; A MacConnachie; Tabitha Mahungu; Daniel Martin; Neal Marshall; Stephen Mepham; Richard J. Orton; Massimo Palmarini; Monika Patel; Colin Perry; S. Erica Peters; Duncan Porter; David S. Ritchie; Neil D. Ritchie; R. Andrew Seaton; Vattipally B. Sreenu
Summary Background There are thousands of survivors of the 2014 Ebola outbreak in west Africa. Ebola virus can persist in survivors for months in immune-privileged sites; however, viral relapse causing life-threatening and potentially transmissible disease has not been described. We report a case of late relapse in a patient who had been treated for severe Ebola virus disease with high viral load (peak cycle threshold value 13·2). Methods A 39-year-old female nurse from Scotland, who had assisted the humanitarian effort in Sierra Leone, had received intensive supportive treatment and experimental antiviral therapies, and had been discharged with undetectable Ebola virus RNA in peripheral blood. The patient was readmitted to hospital 9 months after discharge with symptoms of acute meningitis, and was found to have Ebola virus in cerebrospinal fluid (CSF). She was treated with supportive therapy and experimental antiviral drug GS-5734 (Gilead Sciences, San Francisco, Foster City, CA, USA). We monitored Ebola virus RNA in CSF and plasma, and sequenced the viral genome using an unbiased metagenomic approach. Findings On admission, reverse transcriptase PCR identified Ebola virus RNA at a higher level in CSF (cycle threshold value 23·7) than plasma (31·3); infectious virus was only recovered from CSF. The patient developed progressive meningoencephalitis with cranial neuropathies and radiculopathy. Clinical recovery was associated with addition of high-dose corticosteroids during GS-5734 treatment. CSF Ebola virus RNA slowly declined and was undetectable following 14 days of treatment with GS-5734. Sequencing of plasma and CSF viral genome revealed only two non-coding changes compared with the original infecting virus. Interpretation Our report shows that previously unanticipated, late, severe relapses of Ebola virus can occur, in this case in the CNS. This finding fundamentally redefines what is known about the natural history of Ebola virus infection. Vigilance should be maintained in the thousands of Ebola survivors for cases of relapsed infection. The potential for these cases to initiate new transmission chains is a serious public health concern. Funding Royal Free London NHS Foundation Trust.
Journal of General Virology | 2015
Eleanor Gaunt; Heli Harvala; Riikka Österback; Vattipally B. Sreenu; Emma C. Thomson; Matti Waris; Peter Simmonds
Human coxsackievirus A6 (CVA6) is an enterically transmitted enterovirus. Until recently, CVA6 infections were considered as being of minor clinical significance, and only rarely aetiologically linked with hand, foot and mouth disease (HFMD) associated with other species A enteroviruses (particularly EV71 and CVA16). From 2008 onwards, however, CVA6 infections have been associated with several outbreaks worldwide of atypical HFMD (aHFMD) accompanied by a varicelliform rash. We recently reported CVA6-associated eczema herpeticum occurring predominantly in children and young adults in Edinburgh in January and February 2014. To investigate genetic determinants of novel clinical phenotypes of CVA6, we genetically characterized and analysed CVA6 variants associated with eczema herpeticum in Edinburgh in 2014 and those with aHFMD in CAV isolates collected from 2008. A total of eight recombinant forms (RFs) have circulated worldwide over the past 10 years, with the particularly recent appearance of RF-H associated with eczema herpeticum cases in Edinburgh in 2014. Comparison of phylogenies and divergence of complete genome sequences of CVA6 identified recombination breakpoints in 2A–2C, within VP3, and between 5′ untranslated region and VP1. A Bayesian temporal reconstruction of CVA6 evolution since 2004 provided estimates of dates and the actual recombination events that generated more recently appearing recombination groups (RF-E, -F, -G and -H). Associations were observed between recombination groups and clinical presentations of herpangina, aHFMD and eczema herpeticum, but not with VP1 or other structural genes. These observations provided evidence that NS gene regions may potentially contribute to clinical phenotypes and outcomes of CVA6 infection.
Journal of Clinical Microbiology | 2016
Emma C. Thomson; Camilla L. C. Ip; Anjna Badhan; Mette T. Christiansen; Walt Adamson; M. Azim Ansari; David F. Bibby; Judith Breuer; Anthony Brown; Rory Bowden; Josie Bryant; David Bonsall; Ana da Silva Filipe; Chris Hinds; Emma Hudson; Paul Klenerman; Kieren Lythgow; Jean L. Mbisa; John McLauchlan; Richard Myers; Paolo Piazza; Sunando Roy; Amy Trebes; Vattipally B. Sreenu; Jeroen Witteveldt; Eleanor Barnes; Peter Simmonds
ABSTRACT Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance.
Molecular Immunology | 2009
Carine M. Gonçalves; Mónica A. A. Castro; Telmo Henriques; Marta I. Oliveira; Hugo Pinheiro; Carla Oliveira; Vattipally B. Sreenu; Edward J. Evans; Simon J. Davis; Alexandra Moreira; Alexandre M. Carmo
Glycoproteins of the scavenger receptor cysteine-rich (SRCR) superfamily contain one or more protein modules homologous to the membrane-distal domain of macrophage scavenger receptor I. These domains can be found in the extracellular regions of membrane proteins and in secreted glycoproteins, from the most primitive species to vertebrates. A systematic, bioinformatics-based search for putative human proteins related to the forty-seven known human group B SRCR domains identified a new family member that we have called Soluble Scavenger with 5 Domains (SSc5D). SSc5D is a new soluble protein whose expression is restricted to monocytes/macrophages and T-lymphocytes, and is particularly enriched in the placenta. The gene encoding SSc5D spans 30kb of genomic DNA, and contains fourteen exons producing a 4.8kb-long mRNA. The mature polypeptide is predicted to consist of 1573 amino acids comprising, towards the N-terminus, five very similar SRCR domains that are highly conserved among non-marsupial mammals, and a large (>250nm), very heavily glycosylated, mucin-like sequence towards the C-terminus. Each of the SRCR domains is encoded by a single exon, and contains eight cysteine residues, as observed for all other group B SRCR domains. A shorter isoform encoded by a weakly expressed, alternatively spliced transcript, which lacks the mucin-like C-terminal region, was also identified. It seems likely that SSc5D has a role at the interface between adaptive and innate immunity, or in placental function.
Journal of General Virology | 2016
Esther Schnettler; Vattipally B. Sreenu; Timothy J. Mottram; Melanie McFarlane
Mosquito-borne viruses are known to cause disease in humans and livestock and are often difficult to control due to the lack of specific antivirals and vaccines. The Wolbachia endosymbiont has been widely studied for its ability to restrict positive-strand RNA virus infection in mosquitoes, although little is known about the precise antiviral mechanism. In recent years, a variety of insect-specific viruses have been discovered in mosquitoes and an interaction with mosquito-borne viruses has been reported for some of them; however, nothing is known about the effect of Wolbachia on insect-specific virus infection in mosquitoes. Here, we show that transinfection of the Drosophila-derived wMelPop Wolbachia strain into Aedes aegypti-derived cells resulted in inhibition and even clearance of the persistent cell-fusing agent flavivirus infection in these cells. This broadens the antiviral activity of Wolbachia from acute infections to persistent infections and from arboviruses to mosquito-specific viruses. In contrast, no effect on the Phasi Charoen-like bunyavirus persistent infection in these cells was observed, suggesting a difference in Wolbachia inhibition between positive- and negative-strand RNA viruses.
AIDS | 2013
Mayke Leggewie; Vattipally B. Sreenu; Tamer Abdelrahman; E. Carol McWilliam Leitch; Gavin S. Wilkie; Tetyana Klymenko; David Muir; Mark Thursz; Janice Main; Emma C. Thomson
NS3 protease inhibitors are set to improve sustained virological response rates in HIV-positive patients with hepatitis C. We measured the prevalence of natural resistance polymorphisms in 38 acutely infected treatment-naive patients using direct and deep sequencing. Twenty six percent of patients (10/38) had a majority variant resistance mutation (in order of frequency; Q80K – 16%, V36M – 5%, T54S – 3%, V55A – 3%, and D168A – 3%). Low-frequency mutations were detected in all samples. Further studies are required to determine threshold levels associated with treatment failure.
mSphere | 2017
Margus Varjak; Kevin Maringer; Mick Watson; Vattipally B. Sreenu; Anthony C. Fredericks; Emilie Pondeville; Claire L. Donald; Jelle Sterk; Joy Kean; Marie Vazeille; Anna-Bella Failloux; Alain Kohl; Esther Schnettler
Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions. ABSTRACT The small interfering RNA (siRNA) pathway is a major antiviral response in mosquitoes; however, another RNA interference pathway, the PIWI-interacting RNA (piRNA) pathway, has been suggested to be antiviral in mosquitoes. Piwi4 has been reported to be a key mediator of this response in mosquitoes, but it is not involved in the production of virus-specific piRNAs. Here, we show that Piwi4 associates with members of the antiviral exogenous siRNA pathway (Ago2 and Dcr2), as well as with proteins of the piRNA pathway (Ago3, Piwi5, and Piwi6) in an Aedes aegypti-derived cell line, Aag2. Analysis of small RNAs captured by Piwi4 revealed that it is predominantly associated with virus-specific siRNAs in Semliki Forest virus-infected cells and, to a lesser extent, with viral piRNAs. By using a Dcr2 knockout cell line, we showed directly that Ago2 lost its antiviral activity, as it was no longer bound to siRNAs, but Piwi4 retained its antiviral activity in the absence of the siRNA pathway. These results demonstrate a complex interaction between the siRNA and piRNA pathways in A. aegypti and identify Piwi4 as a noncanonical PIWI protein that interacts with members of the siRNA and piRNA pathways, and its antiviral activities may be independent of either pathway. IMPORTANCE Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions.
PLOS Neglected Tropical Diseases | 2017
Margus Varjak; Claire L. Donald; Timothy J. Mottram; Vattipally B. Sreenu; Andres Merits; Kevin Maringer; Esther Schnettler; Alain Kohl
RNA interference (RNAi) controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA) and exogenous short interfering RNA (exo-siRNA) pathways, which are characterized by the production of virus-derived small RNAs of 25–29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV)-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2); although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C) protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.
Cell Reports | 2014
Stefan Tenzer; Hayley Crawford; Phillip Pymm; Robert J. Gifford; Vattipally B. Sreenu; Mirjana Weimershaus; Tulio de Oliveira; Anne Burgevin; Jan Gerstoft; Nadja Akkad; Daniel Lunn; Lars Fugger; John I. Bell; Hansjörg Schild; Peter van Endert; Astrid K. N. Iversen
Summary The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.
Journal of Virology | 2016
William S. Polachek; Hanan F. Moshrif; Michael Franti; Donald M. Coen; Vattipally B. Sreenu; Blair L. Strang
ABSTRACT High-throughput small interfering RNA (siRNA) screening is a useful methodology to identify cellular factors required for virus replication. Here we utilized a high-throughput siRNA screen based on detection of a viral antigen by microscopy to interrogate cellular protein kinases and phosphatases for their importance during human cytomegalovirus (HCMV) replication and identified the class II phosphatidylinositol 3-kinase class II alpha (PI3K-C2A) as being involved in HCMV replication. Confirming this observation, infected cells treated with either pooled or individual siRNAs targeting PI3K-C2A mRNA produced approximately 10-fold less infectious virus than the controls. Western blotting and quantitative PCR analysis of infected cells treated with siRNAs indicated that depletion of PI3K-C2A slightly reduced the accumulation of late but not immediate early or early viral antigens and had no appreciable effect on viral DNA synthesis. Analysis of siRNA-treated cells by electron microscopy and Western blotting indicated that PI3K-C2A was not required for the production of viral capsids but did lead to increased numbers of enveloped capsids in the cytoplasm that had undergone secondary envelopment and a reduction in the amount of viral particles exiting the cell. Therefore, PI3K-C2A is a factor important for HCMV replication and has a role in the production of HCMV virions. IMPORTANCE There is limited information about the cellular factors required for human cytomegalovirus (HCMV) replication. Therefore, to identify proteins involved in HCMV replication, we developed a methodology to conduct a high-throughput siRNA screen of HCMV-infected cells. From our screening data, we focused our studies on the top hit from our screen, the lipid kinase phosphatidylinositol 3-kinase class II alpha (PI3K-C2A), as its role in HCMV replication was unknown. Interestingly, we found that PI3K-C2A is important for the production of HCMV virions and is involved in virion production after secondary envelopment of viral capsids, the encapsidation of HCMV capsids by a lipid bilayer that occurs before virions exit the cell.