Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkat Maruthamuthu is active.

Publication


Featured researches published by Venkat Maruthamuthu.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cell-ECM traction force modulates endogenous tension at cell–cell contacts

Venkat Maruthamuthu; Benedikt Sabass; Ulrich Schwarz; Margaret L. Gardel

Cells in tissues are mechanically coupled both to the ECM and neighboring cells, but the coordination and interdependency of forces sustained at cell-ECM and cell–cell adhesions are unknown. In this paper, we demonstrate that the endogenous force sustained at the cell–cell contact between a pair of epithelial cells is approximately 100 nN, directed perpendicular to the cell–cell interface and concentrated at the contact edges. This force is stably maintained over time despite significant fluctuations in cell–cell contact length and cell morphology. A direct relationship between the total cellular traction force on the ECM and the endogenous cell–cell force exists, indicating that the cell–cell tension is a constant fraction of the cell-ECM traction. Thus, modulation of ECM properties that impact cell-ECM traction alters cell–cell tension. Finally, we show in a minimal model of a tissue that all cells experience similar forces from the surrounding microenvironment, despite differences in the extent of cell-ECM and cell–cell adhesion. This interdependence of cell–cell and cell-ECM forces has significant implications for the maintenance of the mechanical integrity of tissues, mechanotransduction, and tumor mechanobiology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions

Nicolas Borghi; Molly Lowndes; Venkat Maruthamuthu; Margaret L. Gardel; W. James Nelson

During normal development and in disease, cohesive tissues undergo rearrangements that require integration of signals from cell adhesions to neighboring cells and to the extracellular matrix (ECM). How a range of cell behaviors is coordinated by these different adhesion complexes is unknown. To analyze epithelial cell motile behavior in response to combinations of cell–ECM and cell–cell adhesion cues, we took a reductionist approach at the single-cell scale by using unique, functionalized micropatterned surfaces comprising alternating stripes of ECM (collagenIV) and adjustable amounts of E-cadherin-Fc (EcadFc). On these surfaces, individual cells spatially segregated integrin- and cadherin-based complexes between collagenIV and EcadFc surfaces, respectively. Cell migration required collagenIV and did not occur on surfaces functionalized with only EcadFc. However, E-cadherin adhesion dampened lamellipodia activity on both collagenIV and EcadFc surfaces and biased the direction of cell migration without affecting the migration rate, all in an EcadFc concentration-dependent manner. Traction force microscopy showed that spatial confinement of integrin-based adhesions to collagenIV stripes induced anisotropic cell traction on collagenIV and migration directional bias. Selective depletion of different pools of αE-catenin, an E-cadherin and actin binding protein, identified a membrane-associated pool required for E-cadherin–mediated adhesion and down-regulation of lamellipodia activity and a cytosolic pool that down-regulated the migration rate in an E-cadherin adhesion-independent manner. These results demonstrate that there is crosstalk between E-cadherin– and integrin-based adhesion complexes and that E-cadherin regulates lamellipodia activity and cell migration directionality, but not cell migration rate.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Similarities between heterophilic and homophilic cadherin adhesion

Anil Prakasam; Venkat Maruthamuthu; Deborah E. Leckband

The mechanism that drives the segregation of cells into tissue-specific subpopulations during development is largely attributed to differences in intercellular adhesion. This process requires the cadherin family of calcium-dependent glycoproteins. A widely held view is that protein-level discrimination between different cadherins on cell surfaces drives this sorting process. Despite this postulated molecular selectivity, adhesion selectivity has not been quantitatively verified at the protein level. In this work, molecular force measurements and bead aggregation assays tested whether differences in cadherin bond strengths could account for cell sorting in vivo and in vitro. Studies were conducted with chicken N-cadherin, canine E-cadherin, and Xenopus C-cadherin. Both qualitative bead aggregation and quantitative force measurements show that the cadherins cross-react. Furthermore, heterophilic adhesion is not substantially weaker than homophilic adhesion, and the measured differences in adhesion do not correlate with cell sorting behavior. These results suggest that the basis for cell segregation during morphogenesis does not map exclusively to protein-level differences in cadherin adhesion.


Current Opinion in Cell Biology | 2010

Conserved F-actin dynamics and force transmission at cell adhesions

Venkat Maruthamuthu; Yvonne Aratyn-Schaus; Margaret L. Gardel

Adhesions are a central mechanism by which cells mechanically interact with the surrounding extracellular matrix (ECM) and neighboring cells. In both cell-ECM and cell-cell adhesions, forces generated within the actin cytoskeleton are transmitted to the surrounding environment and are essential for numerous morphogenic processes. Despite differences in many molecular components that regulate cell-cell and cell-ECM adhesions, the roles of F-actin dynamics and mechanical forces in adhesion regulation are surprisingly similar. Moreover, force transmission at adhesions occurs concomitantly with dynamic F-actin; proteins comprising the adhesion of F-actin to the plasma membrane must accommodate this movement while still facilitating force transmission. Thus, despite different molecular architectures, integrin and cadherin-mediated adhesions operate with common biophysical characteristics to transmit and respond to mechanical forces in multicellular tissue.


Biophysical Journal | 2010

Allosteric Cross Talk between Cadherin Extracellular Domains

Quanming Shi; Venkat Maruthamuthu; Fang Li; Deborah E. Leckband

Atomic force microscopy and surface force apparatus measurements determined the functional impact of the cadherin point mutation W2A and domain deletion mutations on C-cadherin binding signatures. Direct comparison of results obtained using both experimental approaches demonstrates that C-cadherin ectodomains form multiple independent bonds that require different structural regions. The results presented reveal significant interdomain cross talk. They further demonstrate that the mutation W2A not only abolishes adhesion between N-terminal domains, but allosterically modulates other binding states that require functional domains distal to the N-terminal binding site. Such allosteric effects may play a prominent role in modulating adhesion by Type I classic cadherins, cadherin oligomerization at junctional contacts, and propagation of binding information to the cytoplasmic region.


Biophysical Journal | 2014

Protrusive Activity Guides Changes in Cell-Cell Tension during Epithelial Cell Scattering

Venkat Maruthamuthu; Margaret L. Gardel

Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.


Biophysical Journal | 2009

Elasticity and rupture of a multi-domain neural cell adhesion molecule complex.

Venkat Maruthamuthu; Klaus Schulten; Deborah E. Leckband

The neural cell adhesion molecule (NCAM) plays an important role in nervous system development. NCAM forms a complex between its terminal domains Ig1 and Ig2. When NCAM of cell A and of cell B connect to each other through complexes Ig12(A)/Ig12(B), the relative mobility of cells A and B and membrane tension exerts a force on the Ig12(A)/Ig12(B) complex. In this study, we investigated the response of the complex to force, using steered molecular dynamics. Starting from the structure of the complex from the Ig1-Ig2-Ig3 fragment, we first demonstrated that the complex, which differs in dimensions from a previous structure from the Ig1-Ig2 fragment in the crystal environment, assumes the same extension when equilibrated in solvent. We then showed that, when the Ig12(A)/Ig12(B) complex is pulled apart with forces 30-70 pN, it exhibits elastic behavior (with a spring constant of approximately 0.03 N/m) because of the relative reorientation of domains Ig1 and Ig2. At higher forces, the complex ruptures; i.e., Ig12(A) and Ig12(B) separate. The interfacial interactions between Ig12(A) and Ig12(B), monitored throughout elastic extension and rupture, identify E16, F19, K98, and L175 as key side chains stabilizing the complex.


Micromachines | 2016

Electrokinetic Phenomena in Pencil Lead-Based Microfluidics

Yashar Bashirzadeh; Venkat Maruthamuthu; Shizhi Qian

Fabrication of microchannels and associated electrodes to generate electrokinetic phenomena often involves costly materials and considerable effort. In this study, we used graphite pencil-leads as low cost, disposable 3D electrodes to investigate various electrokinetic phenomena in straight cylindrical microchannels, which were themselves fabricated by using a graphite rod as the microchannel mold. Individual pencil-leads were employed as the micro-electrodes arranged along the side walls of the microchannel. Efficient electrokinetic phenomena provided by the 3D electrodes, including alternating current electroosmosis (ACEO), induced-charge electroosmosis (ICEO), and dielectrophoresis (DEP), were demonstrated by the introduced pencil-lead based microfluidic devices. The electrokinetic phenomena were characterized by micro-particle image velocimetry (micro-PIV) measurements and microscopy imaging. Highly efficient electrokinetic phenomena using 3D pencil-lead electrodes showed the affordability and ease of this technique to fabricate microfluidic devices embedded with electrodes for electrokinetic fluid and particle manipulations.


Journal of Visualized Experiments | 2018

Stiffness Measurement of Soft Silicone Substrates for Mechanobiology Studies Using a Widefield Fluorescence Microscope

Yashar Bashirzadeh; Siddharth Chatterji; Dakota Palmer; Sandeep P. Dumbali; Shizhi Qian; Venkat Maruthamuthu

Soft tissues in the human body typically have stiffness in the kilopascal (kPa) range. Accordingly, silicone and hydrogel flexible substrates have been proven to be useful substrates for culturing cells in a physical microenvironment that partially mimics in vivo conditions. Here, we present a simple protocol for characterizing the Youngs moduli of isotropic linear elastic substrates typically used for mechanobiology studies. The protocol consists of preparing a soft silicone substrate on a Petri dish or stiff silicone, coating the top surface of the silicone substrate with fluorescent beads, using a millimeter-scale sphere to indent the top surface (by gravity), imaging the fluorescent beads on the indented silicone surface using a fluorescence microscope, and analyzing the resultant images to calculate the Youngs modulus of the silicone substrate. Coupling the substrates top surface with a moduli extracellular matrix protein (in addition to the fluorescent beads) allows the silicone substrate to be readily used for cell plating and subsequent studies using traction force microscopy experiments. The use of stiff silicone, instead of a Petri dish, as the base of the soft silicone, enables the use of mechanobiology studies involving external stretch. A specific advantage of this protocol is that a widefield fluorescence microscope, which is commonly available in many labs, is the major equipment necessary for this procedure. We demonstrate this protocol by measuring the Youngs modulus of soft silicone substrates of different elastic moduli.


Journal of Biomechanical Engineering-transactions of The Asme | 2017

Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony

Sandeep P. Dumbali; Lanju Mei; Shizhi Qian; Venkat Maruthamuthu

Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

Collaboration


Dive into the Venkat Maruthamuthu's collaboration.

Top Co-Authors

Avatar

Shizhi Qian

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamid Razavi

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhinav Mohan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Alex F. Kniffin

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge