Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkat S. Malladi is active.

Publication


Featured researches published by Venkat S. Malladi.


Nucleic Acids Research | 2012

The UCSC Genome Browser database: extensions and updates 2011

Timothy R. Dreszer; Donna Karolchik; Ann S. Zweig; Angie S. Hinrichs; Brian J. Raney; Robert M. Kuhn; Laurence R. Meyer; Matthew C. Wong; Cricket A. Sloan; Kate R. Rosenbloom; Greg Roe; Brooke Rhead; Andy Pohl; Venkat S. Malladi; Chin H. Li; Katrina Learned; Vanessa M. Kirkup; Fan Hsu; Rachel A. Harte; Luvina Guruvadoo; Mary Goldman; Belinda Giardine; Pauline A. Fujita; Mark Diekhans; Melissa S. Cline; Hiram Clawson; Galt P. Barber; David Haussler; W. James Kent

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced ‘track data hubs’, which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browsers image.


Nucleic Acids Research | 2012

ENCODE Data in the UCSC Genome Browser: year 5 update

Kate R. Rosenbloom; Cricket A. Sloan; Venkat S. Malladi; Timothy R. Dreszer; Katrina Learned; Vanessa M. Kirkup; Matthew C. Wong; Morgan Maddren; Ruihua Fang; Steven G. Heitner; Brian T. Lee; Galt P. Barber; Rachel A. Harte; Mark Diekhans; Jeffrey C. Long; Steven P. Wilder; Ann S. Zweig; Donna Karolchik; Robert M. Kuhn; David Haussler; W. James Kent

The Encyclopedia of DNA Elements (ENCODE), http://encodeproject.org, has completed its fifth year of scientific collaboration to create a comprehensive catalog of functional elements in the human genome, and its third year of investigations in the mouse genome. Since the last report in this journal, the ENCODE human data repertoire has grown by 898 new experiments (totaling 2886), accompanied by a major integrative analysis. In the mouse genome, results from 404 new experiments became available this year, increasing the total to 583, collected during the course of the project. The University of California, Santa Cruz, makes this data available on the public Genome Browser http://genome.ucsc.edu for visual browsing and data mining. Download of raw and processed data files are all supported. The ENCODE portal provides specialized tools and information about the ENCODE data sets.


Genome Biology | 2012

An encyclopedia of mouse DNA elements (Mouse ENCODE)

John A. Stamatoyannopoulos; Michael Snyder; Ross C. Hardison; Bing Ren; Thomas R. Gingeras; David M. Gilbert; Mark Groudine; M. A. Bender; Rajinder Kaul; Theresa K. Canfield; Erica Giste; Audra K. Johnson; Mia Zhang; Gayathri Balasundaram; Rachel Byron; Vaughan Roach; Peter J. Sabo; Richard Sandstrom; A Sandra Stehling; Robert E. Thurman; Sherman M. Weissman; Philip Cayting; Manoj Hariharan; Jin Lian; Yong Cheng; Stephen G. Landt; Zhihai Ma; Barbara J. Wold; Job Dekker; Gregory E. Crawford

To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.


Nucleic Acids Research | 2011

ENCODE whole-genome data in the UCSC genome browser (2011 update)

Brian J. Raney; Melissa S. Cline; Kate R. Rosenbloom; Timothy R. Dreszer; Katrina Learned; Galt P. Barber; Laurence R. Meyer; Cricket A. Sloan; Venkat S. Malladi; Krishna M. Roskin; Bernard B. Suh; Angie S. Hinrichs; Hiram Clawson; Ann S. Zweig; Vanessa M. Kirkup; Pauline A. Fujita; Brooke Rhead; Kayla E. Smith; Andy Pohl; Robert M. Kuhn; Donna Karolchik; David Haussler; W. James Kent

The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.


Nucleic Acids Research | 2016

ENCODE data at the ENCODE portal

Cricket A. Sloan; Esther T. Chan; Jean M. Davidson; Venkat S. Malladi; J. Seth Strattan; Benjamin C. Hitz; Idan Gabdank; Aditi K. Narayanan; Marcus Ho; Brian T. Lee; Laurence D. Rowe; Timothy R. Dreszer; Greg Roe; Nikhil R. Podduturi; Forrest Tanaka; Eurie L. Hong; J. Michael Cherry

The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments.


BMC Genomics | 2008

Pyrosequencing as a method for SNP identification in the rhesus macaque (Macaca mulatta)

Jessica Satkoski; Ripan S. Malhi; Sree Kanthaswamy; Raul Y. Tito; Venkat S. Malladi; David Glenn Smith

BackgroundRhesus macaques (Macaca mulatta) are the primate most used for biomedical research, but phenotypic differences between Indian-origin and Chinese rhesus macaques have encouraged genetic methods for identifying genetic differences between these two populations. The completion of the rhesus genome has led to the identification of many single nucleotide polymorphisms (SNPs) in this species. These single nucleotide polymorphisms have many advantages over the short tandem repeat (STR) loci currently used to assay genetic variation. However, the number of currently identified polymorphisms is too small for whole genome analysis or studies of quantitative trait loci. To that end, we tested a combination of methods to identify large numbers of high-confidence SNPs, and screen those with high minor allele frequencies (MAF).ResultsBy testing our previously reported single nucleotide polymorphisms, we identified a subset of high-confidence, high-MAF polymorphisms. Resequencing revealed a large number of regionally specific SNPs not identified through a single pyrosequencing run. By resequencing a pooled sample of four individuals, we reliably identified loci with a MAF of at least 12.5%. Finally, we found that when applied to a larger, geographically variable sample of rhesus, a large proportion of our loci were variable in both populations, and very few loci were ancestry informative. Despite this fact, the SNP loci were more effective at discriminating Indian and Chinese rhesus than STR loci.ConclusionPyrosequencing and pooled resequencing are viable methods for the identification of high-MAF SNP loci in rhesus macaques. These SNP loci are appropriate for screening both the inter- and intra-population genetic variation.


Journal of Forensic Sciences | 2009

Canine Population Data Generated from a Multiplex STR Kit for Use in Forensic Casework

Sree Kanthaswamy; Bradley K. Tom; Anna Maria Mattila; Eric Johnston; Melody Dayton; Jennifer Kinaga; Bethany Joy-Alise Erickson; Joy Halverson; Dennis Fantin; Sue K. Denise; Alexander Kou; Venkat S. Malladi; Jessica Satkoski; Bruce Budowle; David Glenn Smith; Mikko T. Koskinen

Abstract:  Canine biological specimens are often part of the physical evidence from crime scenes. Until now, there have been no validated canine‐specific forensic reagent kits available. A multiplex genotyping system, comprising 18 short tandem repeats (STRs) and a sex‐linked zinc finger locus for gender determination, was developed for generating population genetic data assessing the weight of canine forensic DNA profiles. Allele frequencies were estimated for 236 pedigreed and 431 mixed breed dogs residing in the U.S. Average random match probability is 1 in 2 × 1033 using the regional database and 1 in 4 × 1039 using the breed dataset. Each pedigreed population was genetically distinct and could be differentiated from the mixed breed dog population but genetic variation was not significantly correlated with geographic transition. Results herein support the use of the allele frequency data with the canine STR multiplex for conveying the significance of identity testing for forensic casework, parentage testing, and breed assignments.


Journal of Medical Primatology | 2010

Detecting signatures of inter-regional and inter-specific hybridization among the Chinese rhesus macaque Specific Pathogen-free (SPF) population using single nucleotide polymorphic (SNP) markers

Sree Kanthaswamy; Jessica Satkoski; Alex Kou; Venkat S. Malladi; David Glenn Smith

Background While rates of gene flow between rhesus and longtail macaque populations near their hybrid zone in Indochina have been quantified elsewhere, this study demonstrates that the inter‐specific introgression is not limited to the Indochinese hybrid zone but is more geographically widespread.


Primates | 2011

The effect of SNP discovery method and sample size on estimation of population genetic data for Chinese and Indian rhesus macaques (Macaca mulatta).

Jessica Satkoski Trask; Ripan S. Malhi; Sree Kanthaswamy; Jesse Johnson; Wendy T. Garnica; Venkat S. Malladi; David Glenn Smith

This study was designed to address issues regarding sample size and marker location that have arisen from the discovery of SNPs in the genomes of poorly characterized primate species and the application of these markers to the study of primate population genetics. We predict the effect of discovery sample size on the probability of discovering both rare and common SNPs and then compare this prediction with the proportion of common and rare SNPs discovered when different numbers of individuals are sequenced. Second, we examine the effect of genomic region on estimates of common population genetic data, comparing markers from both coding and non-coding regions of the rhesus macaque genome and the population genetic data calculated from these markers, to measure the degree and direction of bias introduced by SNPs located in coding versus non-coding regions of the genome. We found that both discovery sample size and genomic region surveyed affect SNP marker attributes and population genetic estimates, even when these are calculated from an expanded data set containing more individuals than the original discovery data set. Although none of the SNP detection methods or genomic regions tested in this study was completely uninformative, these results show that each has a different kind of genetic variation that is suitable for different purposes, and each introduces specific types of bias. Given that each SNP marker has an individual evolutionary history, we calculated that the most complete and unbiased representation of the genetic diversity present in the individual can be obtained by incorporating at least 10 individuals into the discovery sample set, to ensure the discovery of both common and rare polymorphisms.


Journal of Medical Primatology | 2009

Development of a Chinese–Indian hybrid (Chindian) rhesus macaque colony at the California National Primate Research Center by introgression

Sreetharan Kanthaswamy; Leanne Gill; Jessica Satkoski; Vivek Goyal; Venkat S. Malladi; Alexander Kou; Kirin Basuta; Lilit Sarkisyan; Debra George; David Glenn Smith

Background  Fullbred Chinese and Indian rhesus macaques represent genetically distinct populations. The California National Primate Research Center introduced Chinese founders into its Indian‐derived rhesus colony in response to the 1978 Indian embargo on exportation of animals for research and the concern that loss of genetic variation in the closed colony would hamper research efforts. The resulting hybrid rhesus now number well over a thousand animals and represent a growing proportion of the animals in the colony.

Collaboration


Dive into the Venkat S. Malladi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian T. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. James Kent

University of California

View shared research outputs
Top Co-Authors

Avatar

Ann S. Zweig

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge