Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkata M. V. Gunturi is active.

Publication


Featured researches published by Venkata M. V. Gunturi.


geographic information science | 2012

Experiences with evacuation route planning algorithms

Shashi Shekhar; KwangSoo Yang; Venkata M. V. Gunturi; Lydia Manikonda; Dev Oliver; Xun Zhou; Betsy George; Sangho Kim; Jeffrey M.R. Wolff; Qingsong Lu

Efficient tools are needed to identify routes and schedules to evacuate affected populations to safety in the event of natural disasters. Hurricane Rita and the recent tsunami revealed limitations of traditional approaches to provide emergency preparedness for evacuees and to predict the effects of evacuation route planning (ERP). Challenges arise during evacuations due to the spread of people over space and time and the multiple paths that can be taken to reach them; key assumptions such as stationary ranking of alternative routes and optimal substructure are violated in such situations. Algorithms for ERP were first developed by researchers in operations research and transportation science. However, these proved to have high computational complexity and did not scale well to large problems. Over the last decade, we developed a different approach, namely the Capacity Constrained Route Planner (CCRP), which generalizes shortest path algorithms by honoring capacity constraints and the spread of people over space and time. The CCRP uses time-aggregated graphs to reduce storage overhead and increase computational efficiency. Experimental evaluation and field use in Twin Cities Homeland Security scenarios demonstrated that CCRP is faster, more scalable, and easier to use than previous techniques. We also propose a novel scalable algorithm that exploits the spatial structure of transportation networks to accelerate routing algorithms for large network datasets. We evaluated our new approach for large-scale networks around downtown Minneapolis and riverside areas. This article summarizes experiences and lessons learned during the last decade in ERP and relates these to Professor Goodchilds contributions.


ISPRS international journal of geo-information | 2015

Spatiotemporal Data Mining: A Computational Perspective

Shashi Shekhar; Zhe Jiang; Reem Y. Ali; Emre Eftelioglu; Xun Tang; Venkata M. V. Gunturi; Xun Zhou

Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but potentially useful patterns from large spatiotemporal databases. It has broad application domains including ecology and environmental management, public safety, transportation, earth science, epidemiology, and climatology. The complexity of spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for extracting spatiotemporal patterns. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Compared with other surveys in the literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches for various pattern families. ISPRS Int. J. Geo-Inf. 2015, 4 2307 We also list popular software tools for spatiotemporal data analysis. The survey concludes with a look at future research needs.


symposium on large spatial databases | 2011

A critical-time-point approach to all-start-time lagrangian shortest paths: a summary of results

Venkata M. V. Gunturi; Ernesto Nunes; KwangSoo Yang; Shashi Shekhar

Given a spatio-temporal network, a source, a destination, and a start-time interval, the All-start-time Lagrangian Shortest Paths (ALSP) problem determines a path set which includes the shortest path for every start time in the given interval. ALSP is important for critical societal applications related to air travel, road travel, and other spatiotemporal networks. However, ALSP is computationally challenging due to the non-stationary ranking of the candidate paths, meaning that a candidate path which is optimal for one start time may not be optimal for others. Determining a shortest path for each start-time leads to redundant computations across consecutive start times sharing a common solution. The proposed approach reduces this redundancy by determining the critical time points at which an optimal path may change. Theoretical analysis and experimental results show that this approach performs better than naive approaches particularly when there are few critical time points.


symposium on large spatial databases | 2015

Discovering Non-compliant Window Co-Occurrence Patterns: A Summary of Results

Reem Y. Ali; Venkata M. V. Gunturi; Andrew J. Kotz; Shashi Shekhar; William F. Northrop

Given a set of trajectories annotated with measurements of physical variables, the problem of Non-compliant Window Co-occurrence (NWC) pattern discovery aims to determine temporal signatures in the explanatory variables which are highly associated with windows of undesirable behavior in a target variable. NWC discovery is important for societal applications such as eco-friendly transportation (e.g. identifying engine signatures leading to high greenhouse gas emissions). Challenges of designing a scalable algorithm for NWC discovery include the non-monotonicity of popular spatio-temporal statistical interest measures of association such as the cross-K function. This challenge renders the anti-monotone pruning based algorithms (e.g. Apriori) inapplicable. To address this limitation, we propose two novel upper bounds for the cross-K function which help in filtering uninteresting candidate patterns. Using these bounds, we also propose a Multi-Parent Tracking approach (MTNMiner) for mining NWC patterns. A case study with real world engine data demonstrates the ability of the proposed approach to discover patterns which are interesting to engine scientists. Experimental evaluation on real-world data show that MTNMiner results in substantial computational savings over the naive approach.


IEEE Transactions on Knowledge and Data Engineering | 2015

A Critical-Time-Point Approach to All-Departure-Time Lagrangian Shortest Paths

Venkata M. V. Gunturi; Shashi Shekhar; KwangSoo Yang

Given a spatio-temporal network, a source, a destination, and a desired departure time interval, the All-departure-time Lagrangian Shortest Paths (ALSP) problem determines a set which includes the shortest path for every departure time in the given interval. ALSP is important for critical societal applications such as eco-routing. However, ALSP is computationally challenging due to the non-stationary ranking of the candidate paths across distinct departure-times. Current related work for reducing the redundant work, across consecutive departure-times sharing a common solution, exploits only partial information e.g., the earliest feasible arrival time of a path. In contrast, our approach uses all available information, e.g., the entire time series of arrival times for all departure-times. This allows elimination of all knowable redundant computation based on complete information available at hand. We operationalize this idea through the concept of critical-time-points (CTP), i.e., departure-times before which ranking among candidate paths cannot change. In our preliminary work, we proposed a CTP based forward search strategy. In this paper, we propose a CTP based temporal bi-directional search for the ALSP problem via a novel impromptu rendezvous termination condition. Theoretical and experimental analysis show that the proposed approach outperforms the related work approaches particularly when there are few critical-time-points.


international conference on conceptual modeling | 2014

Lagrangian Xgraphs: A Logical Data-Model for Spatio-Temporal Network Data: A Summary

Venkata M. V. Gunturi; Shashi Shekhar

Given emerging diverse spatio temporal network (STN) datasets, e.g., GPS tracks, temporally detailed roadmaps and traffic signal data, the aim is to develop a logical data-model which achieves a seamless integration of these datasets for diverse use-cases (queries) and supports efficient algorithms. This problem is important for travel itinerary comparison and navigation applications. However, this is challenging due to the conflicting requirements of expressive power and computational efficiency as well as the need to support ever more diverse STN datasets, which now record non-decomposable properties of n-ary relations. Examples include travel-time and fuel-use during a journey on a route with a sequence of coordinated traffic signals and turn delays. Current data models for STN datasets are limited to representing properties of only binary relations, e.g., distance on individual road segments. In contrast, the proposed logical data-model, Lagrangian Xgraphs can express properties of both binary and n-ary relations. Our initial study shows that Lagrangian Xgraphs are more convenient for representing diverse STN datasets and comparing candidate travel itineraries.


geographic information science | 2012

A Dartboard Network Cut Based Approach to Evacuation Route Planning: A Summary of Results

KwangSoo Yang; Venkata M. V. Gunturi; Shashi Shekhar

Given a transportation network, a population, and a set of destinations, the goal of evacuation route planning is to produce routes that minimize the evacuation time for the population. Evacuation planning is essential for ensuring public safety in the wake of man-made or natural disasters (e.g., terrorist acts, hurricanes, and nuclear accidents). The problem is challenging because of the large size of network data, the large number of evacuees, and the need to account for capacity constraints in the road network. Promising methods that incorporate capacity constraints into route planning have been developed but new insights are needed to reduce the high computational costs incurred by these methods with large-scale networks. In this paper, we propose a novel scalable approach that explicitly exploits the spatial structure of road networks to minimize the computational time. Our new approach accelerates the routing algorithm by partitioning the network using dartboard network-cuts and groups node-independent shortest routes to reduce the number of search iterations. Experimental results using a Minneapolis, MN road network demonstrate that the proposed approach outperforms prior work for CCRP computation by orders of magnitude.


advances in geographic information systems | 2015

Future connected vehicles: challenges and opportunities for spatio-temporal computing

Reem Y. Ali; Venkata M. V. Gunturi; Shashi Shekhar; Ahmed Eldawy; Mohamed F. Mokbel; Andrew J. Kotz; William F. Northrop

Modern vehicles are increasingly being equipped with rich instrumentation that enables them to collect location aware data on a wide variety of travel related phenomena such as the real-world performance of engines and powertrain, driver preferences, context of the vehicle with respect to others nearby, and--indirectly--traffic on the transportation network itself. Combined with their increased access to the Internet, these connected vehicles are opening up vast opportunities to improve the safety, environmental friendliness, and the overall experience of urban travel. However, significant spatial computing challenges need to be addressed before we can realize the full potential of connected vehicles. This paper presents some of the open research questions under this theme from the perspectives of query processing, data science and data engineering.


IEEE Transactions on Knowledge and Data Engineering | 2014

Lagrangian Approaches to Storage of Spatio-Temporal Network Datasets

KwangSoo Yang; Michael R. Evans; Venkata M. V. Gunturi; James M. Kang; Shashi Shekhar

Given a spatio-temporal network (STN) and a set of STN operations, the goal of the Storing Spatio-Temporal Networks (SSTN) problem is to produce an efficient method of storing STN data that minimizes disk I/O costs for given STN operations. The SSTN problem is important for many societal applications, such as surface and air transportation management systems. The problem is NP hard, and is challenging due to an inherently large data volume and novel semantics (e.g., Lagrangian reference frame). Related works rely on orthogonal partitioning approaches (e.g., snapshot and longitudinal) and incur excessive I/O costs when performing common STN queries. Our preliminary work proposed a non-orthogonal partitioning approach in which we optimized the LGetOneSuccessor() operation that retrieves a single successor for a given node on STN. In this paper, we provide a method to optimize the LGetAllSuccessors() operation, which retrieves all successors for a given node on a STN. This new approach uses the concept of a Lagrangian Family Set (LFS) to model data access patterns for STN queries. Experimental results using real-world road and flight traffic datasets demonstrate that the proposed approach outperforms prior work for LGetAllSuccessors() computation workloads.


Geoinformatica | 2017

Discovering non-compliant window co-occurrence patterns

Reem Y. Ali; Venkata M. V. Gunturi; Andrew J. Kotz; Emre Eftelioglu; Shashi Shekhar; William F. Northrop

Given a set of trajectories annotated with measurements of physical variables, the problem of Non-compliant Window Co-occurrence (NWC) pattern discovery aims to determine temporal signatures in the explanatory variables which are highly associated with windows of undesirable behavior in a target variable. NWC discovery is important for societal applications such as eco-friendly transportation (e.g. identifying engine signatures leading to high greenhouse gas emissions). Challenges of designing a scalable algorithm for NWC discovery include the non-monotonicity of popular spatio-temporal statistical interest measures of association such as the cross-K function which renders the anti-monotone pruning based algorithms (e.g. Apriori) inapplicable for such interest measures. In our preliminary work, we proposed two upper bounds for the cross-K function and a top-down multi-parent tracking approach that uses these bounds for filtering out uninteresting candidate patterns and then applies a minimum support (i.e. frequency) threshold as a post-processing step to filter out chance patterns. In this paper, we propose a novel bi-directional pruning approach (BDNMiner) that combines top-down pruning based on the cross-K function threshold with bottom-up pruning based on the minimum support threshold to efficiently mine NWC patterns. Case studies with real world engine data demonstrates the ability of the proposed approach to discover patterns which are interesting to engine scientists. Experimental evaluation on real-world data show that the proposed approach yields substantial computational savings compared to prior work.

Collaboration


Dive into the Venkata M. V. Gunturi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

KwangSoo Yang

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Reem Y. Ali

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xun Zhou

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Zhe Jiang

University of Alabama

View shared research outputs
Top Co-Authors

Avatar

Vinayak Naik

Indraprastha Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmed Eldawy

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge