Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhe Jiang is active.

Publication


Featured researches published by Zhe Jiang.


Journal of Geophysical Research | 2014

Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data

Kevin James Wecht; Daniel J. Jacob; Christian Frankenberg; Zhe Jiang; D. R. Blake

We estimate methane emissions from North America with high spatial resolution by inversion of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations using the Goddard Earth Observing System Chemistry (GEOS-Chem) chemical transport model and its adjoint. The inversion focuses on summer 2004 when data from the Intercontinental Chemical Transport Experiment-North America (INTEX-A) aircraft campaign over the eastern U.S. are available to validate the SCIAMACHY retrievals and evaluate the inversion. From the INTEX-A data we identify and correct a water vapor-dependent bias in the SCIAMACHY data. We conduct an initial inversion of emissions on the horizontal grid of GEOS-Chem (1/2° × 2/3°) to identify correction tendencies relative to the Emission Database for Global Atmospheric Research (EDGAR) v4.2 emission inventory used as a priori. We then cluster these grid cells with a hierarchical algorithm to extract the maximum information from the SCIAMACHY observations. A 1000 cluster ensemble can be adequately constrained, providing ~100 km resolution across North America. Analysis of results indicates that the Hudson Bay Lowland wetlands source is 2.1 Tg a−1, lower than the a priori but consistent with other recent estimates. Anthropogenic U.S. emissions are 30.1 ± 1.3 Tg a−1, compared to 25.8 Tg a−1 and 28.3 Tg a−1 in the EDGAR v4.2 and Environmental Protection Agency (EPA) inventories, respectively. We find that U.S. livestock emissions are 40% greater than in these two inventories. No such discrepancy is apparent for overall U.S. oil and gas emissions, although this may reflect some compensation between overestimate of emissions from storage/distribution and underestimate from production. We find that U.S. livestock emissions are 70% greater than the oil and gas emissions, in contrast to the EDGAR v4.2 and EPA inventories where these two sources are of comparable magnitude.


Science | 2017

Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño

Junjie Liu; Kevin W. Bowman; David Schimel; Nicolas C. Parazoo; Zhe Jiang; Meemong Lee; A. Anthony Bloom; Debra Wunch; Christian Frankenberg; Ying Sun; Christopher W. O’Dell; Kevin Robert Gurney; Dimitris Menemenlis; Michelle M. Gierach; David Crisp; Annmarie Eldering

INTRODUCTION The influence of El Niño on climate is accompanied by large changes to the carbon cycle, and El Niño–induced variability in the carbon cycle has been attributed mainly to the tropical continents. However, owing to a dearth of observations in the tropics, tropical carbon fluxes are poorly quantified, and considerable debate exists over the dominant mechanisms (e.g., plant growth, respiration, fire) and regions (e.g., humid versus semiarid tropics) on the net carbon balance. RATIONALE The launch of the Orbiting Carbon Observatory-2 (OCO-2) shortly before the 2015–2016 El Niño, the second strongest since the 1950s, has provided an opportunity to understand how tropical land carbon fluxes respond to the warm and dry climate characteristics of El Niño conditions. The El Niño events may also provide a natural experiment to study the response of tropical land carbon fluxes to future climate changes, because anomalously warm and dry tropical environments typical of El Niño are expected to be more frequent under most emission scenarios. RESULTS The tropical regions of three continents (South America, Asia, and Africa) had heterogeneous responses to the 2015–2016 El Niño, in terms of both climate drivers and the carbon cycle. The annual mean precipitation over tropical South America and tropical Asia was lower by 3.0σ and 2.8σ, respectively, in 2015 relative to the 2011 La Niña year. Tropical Africa, on the other hand, had near equal precipitation and the same number of dry months between 2015 and 2011; however, surface temperatures were higher by 1.6σ, dominated by the positive anomaly over its eastern and southern regions. In response to the warmer and drier climate anomaly in 2015, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere than in 2011, which accounts for 83.3% of the global total 3.0–gigatons of carbon (gigatons C) net biosphere flux differences and 92.6% of the atmospheric CO2 growth-rate differences between 2015 and 2011. It indicates that the tropical land biosphere flux anomaly was the driver of the highest atmospheric CO2 growth rate in 2015. The three tropical continents had an approximately even contribution to the pantropical net carbon flux anomaly in 2015, but had diverse dominant processes: gross primary production (GPP) reduced carbon uptake (0.9 ± 0.96 gigatons C) in tropical South America, fire increased carbon release (0.4 ± 0.08 gigatons C) in tropical Asia, and respiration increased carbon release (0.6 ± 1.01 gigatons C) in Africa. We found that most of the excess carbon release in 2015 was associated with either extremely low precipitation or high temperatures, or both. CONCLUSION Our results indicate that the global El Niño effect is a superposition of regionally specific effects. The heterogeneous climate forcing and carbon response over the three tropical continents to the 2015–2016 El Niño challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability, which could also be due to previous disturbance and soil and vegetation structure. The similarity between the 2015 tropical climate anomaly and the projected climate changes imply that the role of the tropical land as a buffer for fossil fuel emissions may be reduced in the future. The heterogeneous response may reflect differences in temperature and rainfall anomalies, but intrinsic differences in vegetation species, soils, and prior disturbance may contribute as well. A synergistic use of multiple satellite observations and a long time series of spatially resolved fluxes derived from sustained satellite observations will enable tests of these hypotheses, allow for a more process-based understanding, and, ultimately, aid improved carbon-climate model projections. Diverse climate driver anomalies and carbon cycle responses to the 2015–2016 El Niño over the three tropical continents. Schematic of climate anomaly patterns over the three tropical continents and the anomalies of the net carbon flux and its dominant constituent flux (i.e., GPP, respiration, and fire) relative to the 2011 La Niña during the 2015–2016 El Niño. GtC, gigatons C. The 2015–2016 El Niño led to historically high temperatures and low precipitation over the tropics, while the growth rate of atmospheric carbon dioxide (CO2) was the largest on record. Here we quantify the response of tropical net biosphere exchange, gross primary production, biomass burning, and respiration to these climate anomalies by assimilating column CO2, solar-induced chlorophyll fluorescence, and carbon monoxide observations from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately even contributions from three tropical continents but dominated by diverse carbon exchange processes. The heterogeneity of the carbon-exchange processes indicated here challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability.


Geophysical Research Letters | 2015

Remote‐sensing constraints on South America fire traits by Bayesian fusion of atmospheric and surface data

A. Anthony Bloom; John R. Worden; Zhe Jiang; Helen M. Worden; Thomas P. Kurosu; Christian Frankenberg; David Schimel

Satellite observations reveal substantial burning during the 2007 and 2010 tropical South America fire season, with both years exhibiting similar total burned area. However, 2010 CO fire emissions, based on satellite CO concentration measurements, were substantially lower (−28%), despite the once-in-a-century drought in 2010. We use Bayesian inference with satellite measurements of CH4 and CO concentrations and burned area to quantify shifts in combustion characteristics in 2010 relative to 2007. We find an 88% probability in reduced combusted biomass density associated with the 2010 fires and an 82% probability of lower fire carbon losses in 2010 relative to 2007. Higher combustion efficiency was a smaller contributing factor to the reduced 2010 CO emissions. The reduction in combusted biomass density is consistent with a reduction (4–6%) in Global Ozone Monitoring Experiment 2 solar-induced fluorescence (a proxy for gross primary production) during the preceding months and a potential reduction in biomass (≤8.3%) due to repeat fires.


Journal of Geophysical Research | 2016

Ozone export from East Asia: The role of PAN

Zhe Jiang; John R. Worden; Vivienne H. Payne; Liye Zhu; Emily V. Fischer; Thomas W. Walker; Dylan B. A. Jones

Peroxyacetyl nitrate (PAN) is an important ozone (O3) precursor. The lifetime of PAN is approximately 1month in the free troposphere, and this allows O3 production to occur in pollution plumes at intercontinental distances from its source. In this study we use the Goddard Earth Observing System (GEOS)-Chem global chemical transport model, new satellite measurements of PAN from the Aura Tropospheric Emission Spectrometer (TES), and data from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign over North America, to study the role of natural and anthropogenic Asian emissions on free tropospheric (900–400 hPa) PAN distributions and subsequent O3 production. Using the ARCTAS data with GEOS-Chem, we show that while GEOS-Chem is unbiased with respect to the aircraft data, TES version 7 PAN data are biased high for regions with surface temperatures colder than 285 K. However, GEOS-Chem and TES measurements provide a consistent representation (within 15% difference) of PAN abundance over East Asia. Because of the good agreement between model and observations, we use the GEOS-Chem model to evaluate the sources of PAN precursors and the effect of free tropospheric PAN on the export of O3 from Asia to North America. The GEOS-Chem model results show that the largest contributors to free tropospheric PAN over Asia and the northern Pacific are anthropogenic and soil NOx emissions. Biomass burning emissions have important contributions to free tropospheric PAN over northern Pacific (25% in April), while the contribution from lightning over northern Pacific is significant in July (40%). Strong springtime transport in April results in more export of free tropospheric PAN and O3 from East Asian emissions. This free tropospheric PAN contributes about 35% to the abundance of free tropospheric O3 over western North America in spring and 25% in summer.


Geophysical Research Letters | 2015

TES observations of the interannual variability of PAN over Northern Eurasia and the relationship to springtime fires

Liye Zhu; Emily V. Fischer; Vivienne H. Payne; John R. Worden; Zhe Jiang

Peroxyacetyl nitrate (PAN) plays an important role in atmospheric chemistry through its impact on remote oxidant and nitrogen budgets. PAN is formed rapidly in boreal fire plumes through the oxidation of short-lived volatile organic compounds in the presence of nitrogen oxide radicals. Here we present new satellite observations of PAN from the Tropospheric Emission Spectrometer (TES) over northern Eurasia for April 2006–2010. We observe large interannual variability in TES PAN observations, and we show that fires are one source of this variability using (1) Moderate Resolution Imaging Spectroradiometer Mean Fire Radiative Power observations and (2) Hybrid Single-Particle Lagrangian Integrated Trajectory backward trajectories. We also show that cold springtime temperatures and enhanced vertical mixing in the lower free troposphere over northeastern Eurasia likely played a role in the detection of PAN from TES in April 2006 in this region.


Earth and Space Science | 2017

Global and Brazilian Carbon Response to El Niño Modoki 2011–2010

K. W. Bowman; Junjie Liu; A. Anthony Bloom; N. C. Parazoo; Meemong Lee; Zhe Jiang; Dimitris Menemenlis; Michelle M. Gierach; G. J. Collatz; Kevin Robert Gurney; Debra Wunch

The El Nino Modoki in 2010 led to historic droughts in Brazil. In order to understand its impact on carbon cycle variability, we derive the 2011-2010 annual carbon flux change (δF↑) globally and specifically to Brazil using the NASA Carbon Monitoring System Flux (CMS-Flux) framework. Satellite observations of CO2, CO, and solar induced fluorescence (SIF) are ingested into a 4D-variational assimilation system driven by carbon cycle models to infer spatially resolved carbon fluxes including net ecosystem production, biomass burning, and gross primary productivity (GPP). The global 2011-2010 net carbon flux change was estimated to be δF↑= -1.60 PgC while the Brazilian carbon flux change was -0.24 ± 0.11 PgC. This estimate is broadly within the uncertainty of previous aircraft based estimates restricted to the Amazon basin. The 2011-2010 biomass burning change in Brazil was -0.24 ± 0.036 PgC, which implies a near-zero 2011-2010 change of the net ecosystem production (NEP): the near-zero NEP change is the result of quantitatively comparable increases GPP (0.31 ± 0.20 PgC) and respiration in 2011. Comparisons between Brazilian and global component carbon flux changes reveal complex interactions between the processes controlling annual land-atmosphere CO2 exchanges. These results show the potential of multiple satellite observations to help quantify and spatially resolve the response of productivity and respiration fluxes to climate variability.


Journal of Geophysical Research | 2015

Toronto-area ozone: Long-term measurements and modelled sources of poor air quality events

Cynthia Whaley; K. Strong; Dylan B. A. Jones; T. W. Walker; Zhe Jiang; Daven K. Henze; M. A. Cooke; C. A. McLinden; R. L. Mittermeier; Matthieu Pommier; P. F. Fogal

The University of Toronto Atmospheric Observatory and Environment Canadas Centre for Atmospheric Research Experiments each has over a decade of ground-based Fourier transform infrared (FTIR) spectroscopy measurements in southern Ontario. We present the Toronto area FTIR time series from 2002 to 2013 of two tropospheric trace gases—ozone and carbon monoxide—along with surface in situ measurements taken by government monitoring programs. We interpret their variability with the GEOS-Chem chemical transport model and determine the atmospheric conditions that cause pollution events in the time series. Our analysis includes a regionally tagged O3 model of the 2004–2007 time period, which quantifies the geographical contributions to Toronto area O3. The important emission types for 15 pollution events are then determined with a high-resolution adjoint model. Toronto O3, during pollution events, is most sensitive to southern Ontario and U.S. fossil fuel NOx emissions and natural isoprene emissions. The sources of Toronto pollution events are found to be highly variable, and this is demonstrated in four case studies representing local, short-, middle-, and long-range transport scenarios. This suggests that continental-scale emission reductions could improve air quality in the Toronto region. We also find that abnormally high temperatures and high-pressure systems are common to all pollution events studied, suggesting that climate change may impact Toronto O3. Finally, we quantitatively compare the sensitivity of the surface and column measurements to anthropogenic NOx emissions and show that they are remarkably similar. This work thus demonstrates the usefulness of FTIR measurements in an urban area to assess air quality.


Journal of Geophysical Research | 2017

PAN in the eastern Pacific free troposphere: A satellite view of the sources, seasonality, interannual variability, and timeline for trend detection

Liye Zhu; Vivienne H. Payne; Thomas W. Walker; John R. Worden; Zhe Jiang; S. S. Kulawik; Emily V. Fischer

Peroxyacetyl nitrate (PAN) is an important trace gas that serves to transport nitrogen oxide radicals throughout the troposphere. We present an analysis of satellite observations of PAN from the Tropospheric Emission Spectrometer (TES) over the eastern Pacific Ocean for April and July 2006–2010 and the spring-to-summer seasonal transition for 2006. TES can provide quantitative estimates of free tropospheric PAN in clear-sky or thin cloud conditions where elevated PAN (>0.2 ppbv) is present. The percentage of successful PAN detections increases from April to July and then decreases in August and September. However, there are no significant differences in the tropospheric average PAN either interannually or between these months. Plumes containing elevated PAN are present almost every day in July. Elevated PAN observed in July has multiple sources, including fires in Siberia, anthropogenic sources in eastern China, and recirculated pollution from the continental U.S. We combined the observed variability in the TES PAN retrievals over the eastern Pacific Ocean with a range of possible trends in PAN to determine the observational requirements to detect such trends. Based on the variability observed in the PAN retrievals over this region, we predict that it would be faster to detect a trend of a given magnitude in PAN using satellite observations over the eastern Pacific Ocean region rather than in situ surface observations and that a trend of a given magnitude would be more quickly detected in summer than spring.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Unexpected slowdown of US pollutant emission reduction in the past decade

Zhe Jiang; Brian C. McDonald; Helen M. Worden; John R. Worden; Kazuyuki Miyazaki; Zhen Qu; Daven K. Henze; Dylan B. A. Jones; Avelino F. Arellano; Emily V. Fischer; Liye Zhu; K. Folkert Boersma

Significance Emissions of nitrogen oxides (NOx) have a large impact on air quality and climate change as precursors in the formation of ozone and secondary aerosols. We find that NOx emissions have not been decreasing as expected in recent years (2011–2015) when comparing top-down estimates from satellites and surface NO2 measurements to the trends predicted from the US Environmental Protection Agency’s emission inventory data. The discrepancy can be explained by the growing relative contribution of industrial, area, and off-road mobile sources of emissions, decreasing relative contribution of on-road gasoline vehicles, and slower than expected decreases in on-road diesel NOx emissions, with implications for air-quality management. Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NOx) and carbon monoxide (CO) for 2011–2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA’s NOx emission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions.


Journal of Physics: Condensed Matter | 2005

Manipulation of tunnelling in a quantum dot array

Zhe Jiang; Duan Suqing; Xian-Geng Zhao

In this paper we present a method to control the electronic position in a quantum dot array coherently with a two-electron model. In this novel phenomenon, we find that the external ac driving field has a good manipulative effect on the tunnelling, and therefore the penetrability of the barrier can be easily adjusted. Through studying the Floquet spectrum of the system, we find that it can be divided into two minibands. The upper miniband describes the physical process of states in which the two electrons stay in the same dot and the lower miniband describes the states in which the two electrons stay in different dots. The parameter regions in which the manipulation of tunnelling is investigated exactly correspond to the collapse zones of quasi-energy levels.

Collaboration


Dive into the Zhe Jiang's collaboration.

Top Co-Authors

Avatar

John R. Worden

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daven K. Henze

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen M. Worden

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Liye Zhu

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Vivienne H. Payne

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Anthony Bloom

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Frankenberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. S. Kulawik

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge