Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkata N. Padmanabhan is active.

Publication


Featured researches published by Venkata N. Padmanabhan.


international conference on computer communications | 2000

RADAR: an in-building RF-based user location and tracking system

Paramvir Bahl; Venkata N. Padmanabhan

The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF)-based system for locating and tracking users inside buildings. RADAR operates by recording and processing signal strength information at multiple base stations positioned to provide overlapping coverage in the area of interest. It combines empirical measurements with signal propagation modeling to determine user location and thereby enable location-aware services and applications. We present experimental results that demonstrate the ability of RADAR to estimate user location with a high degree of accuracy.


IEEE ACM Transactions on Networking | 1997

A comparison of mechanisms for improving TCP performance over wireless links

Hari Balakrishnan; Venkata N. Padmanabhan; Srinivasan Seshan; Randy H. Katz

Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant losses due to bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to end performance in wireless and lossy systems. We compare several schemes designed to improve the performance of TCP in such networks. We classify these schemes into three broad categories: end-to-end protocols, where loss recovery is performed by the sender; link-layer protocols that provide local reliability; and split-connection protocols that break the end-to-end connection into two parts at the base station. We present the results of several experiments performed in both LAN and WAN environments, using throughput and goodput as the metrics for comparison. Our results show that a reliable link-layer protocol that is TCP-aware provides very good performance. Furthermore, it is possible to achieve good performance without splitting the end-to-end connection at the base station. We also demonstrate that selective acknowledgments and explicit loss notifications result in significant performance improvements.


acm/ieee international conference on mobile computing and networking | 2003

Impact of interference on multi-hop wireless network performance

Kamal Jain; Jitendra Padhye; Venkata N. Padmanabhan; Lili Qiu

In this paper, we address the following question: given a specific placement of wireless nodes in physical space and a specific traffic workload, what is the maximum throughput that can be supported by the resulting network? Unlike previous work that has focused on computing asymptotic performance bounds under assumptions of homogeneity or randomness in the network topology and/or workload, we work with any given network and workload specified as inputs.A key issue impacting performance is wireless interference between neighboring nodes. We model such interference using a conflict graph, and present methods for computing upper and lower bounds on the optimal throughput for the given network and workload. To compute these bounds, we assume that packet transmissions at the individual nodes can be finely controlled and carefully scheduled by an omniscient and omnipotent central entity, which is unrealistic. Nevertheless, using ns-2 simulations, we show that the routes derived from our analysis often yield noticeably better throughput than the default shortest path routes even in the presence of uncoordinated packet transmissions and MAC contention. This suggests that there is opportunity for achieving throughput gains by employing an interference-aware routing protocol.


network and operating system support for digital audio and video | 2002

Distributing streaming media content using cooperative networking

Venkata N. Padmanabhan; Helen J. Wang; Philip A. Chou; Kunwadee Sripanidkulchai

In this paper, we discuss the problem of distributing streaming media content, both live and on-demand, to a large number of hosts in a scalable way. Our work is set in the context of the traditional client-server framework. Specifically, we consider the problem that arises when the server is overwhelmed by the volume of requests from its clients. As a solution, we propose Cooperative Networking (CoopNet), where clients cooperate to distribute content, thereby alleviating the load on the server. We discuss the proposed solution in some detail, pointing out the interesting research issues that arise, and present a preliminary evaluation using traces gathered at a busy news site during the flash crowd that occurred on September 11, 2001.


international conference on embedded networked sensor systems | 2008

Nericell: rich monitoring of road and traffic conditions using mobile smartphones

Prashanth Mohan; Venkata N. Padmanabhan

We consider the problem of monitoring road and traffic conditions in a city. Prior work in this area has required the deployment of dedicated sensors on vehicles and/or on the roadside, or the tracking of mobile phones by service providers. Furthermore, prior work has largely focused on the developed world, with its relatively simple traffic flow patterns. In fact, traffic flow in cities of the developing regions, which comprise much of the world, tends to be much more complex owing to varied road conditions (e.g., potholed roads), chaotic traffic (e.g., a lot of braking and honking), and a heterogeneous mix of vehicles (2-wheelers, 3-wheelers, cars, buses, etc.). To monitor road and traffic conditions in such a setting, we present Nericell, a system that performs rich sensing by piggybacking on smartphones that users carry with them in normal course. In this paper, we focus specifically on the sensing component, which uses the accelerometer, microphone, GSM radio, and/or GPS sensors in these phones to detect potholes, bumps, braking, and honking. Nericell addresses several challenges including virtually reorienting the accelerometer on a phone that is at an arbitrary orientation, and performing honk detection and localization in an energy efficient manner. We also touch upon the idea of triggered sensing, where dissimilar sensors are used in tandem to conserve energy. We evaluate the effectiveness of the sensing functions in Nericell based on experiments conducted on the roads of Bangalore, with promising results.


acm special interest group on data communication | 1996

Using predictive prefetching to improve World Wide Web latency

Venkata N. Padmanabhan; Jeffrey C. Mogul

The long-term success of the World Wide Web depends on fast response time. People use the Web to access information from remote sites, but do not like to wait long for their results. The latency of retrieving a Web document depends on several factors such as the network bandwidth, propagation time and the speed of the server and client computers. Although several proposals have been made for reducing this latency, it is difficult to push it to the point where it becomes insignificant.This motivates our work, where we investigate a scheme for reducing the latency perceived by users by predicting and prefetching files that are likely to be requested soon, while the user is browsing through the currently displayed page. In our scheme the server, which gets to see requests from several clients, makes predictions while individual clients initiate prefetching. We evaluate our scheme based on trace-driven simulations of prefetching over both high-bandwidth and low-bandwidth links. Our results indicate that prefetching is quite beneficial in both cases, resulting in a significant reduction in the average access time at the cost of an increase in network traffic by a similar fraction. We expect prefetching to be particularly profitable over non-shared (dialup) links and high-bandwidth, high-latency (satellite) links.


acm/ieee international conference on mobile computing and networking | 2010

Indoor localization without the pain

Krishna Chintalapudi; Anand Padmanabha Iyer; Venkata N. Padmanabhan

While WiFi-based indoor localization is attractive, the need for a significant degree of pre-deployment effort is a key challenge. In this paper, we ask the question: can we perform indoor localization with no pre-deployment effort? Our setting is an indoor space, such as an office building or a mall, with WiFi coverage but where we do not assume knowledge of the physical layout, including the placement of the APs. Users carrying WiFi-enabled devices such as smartphones traverse this space in normal course. The mobile devices record Received Signal Strength (RSS) measurements corresponding to APs in their view at various (unknown) locations and report these to a localization server. Occasionally, a mobile device will also obtain and report a location fix, say by obtaining a GPS lock at the entrance or near a window. The centerpiece of our work is the EZ Localization algorithm, which runs on the localization server. The key intuition is that all of the observations reported to the server, even the many from unknown locations, are constrained by the physics of wireless propagation. EZ models these constraints and then uses a genetic algorithm to solve them. The results from our deployment in two different buildings are promising. Despite the absence of any explicit pre-deployment calibration, EZ yields a median localization error of 2m and 7m, respectively, in a small building and a large building, which is only somewhat worse than the 0.7m and 4m yielded by the best-performing but calibration-intensive Horus scheme [29] from prior work.


acm/ieee international conference on mobile computing and networking | 2012

Zee: zero-effort crowdsourcing for indoor localization

Anshul Rai; Krishna Chintalapudi; Venkata N. Padmanabhan; Rijurekha Sen

Radio Frequency (RF) fingerprinting, based onWiFi or cellular signals, has been a popular approach to indoor localization. However, its adoption in the real world has been stymied by the need for sitespecific calibration, i.e., the creation of a training data set comprising WiFi measurements at known locations in the space of interest. While efforts have been made to reduce this calibration effort using modeling, the need for measurements from known locations still remains a bottleneck. In this paper, we present Zee -- a system that makes the calibration zero-effort, by enabling training data to be crowdsourced without any explicit effort on the part of users. Zee leverages the inertial sensors (e.g., accelerometer, compass, gyroscope) present in the mobile devices such as smartphones carried by users, to track them as they traverse an indoor environment, while simultaneously performing WiFi scans. Zee is designed to run in the background on a device without requiring any explicit user participation. The only site-specific input that Zee depends on is a map showing the pathways (e.g., hallways) and barriers (e.g., walls). A significant challenge that Zee surmounts is to track users without any a priori, user-specific knowledge such as the users initial location, stride-length, or phone placement. Zee employs a suite of novel techniques to infer location over time: (a) placement-independent step counting and orientation estimation, (b) augmented particle filtering to simultaneously estimate location and user-specific walk characteristics such as the stride length,(c) back propagation to go back and improve the accuracy of ocalization in the past, and (d) WiFi-based particle initialization to enable faster convergence. We present an evaluation of Zee in a large office building.


acm special interest group on data communication | 2001

An investigation of geographic mapping techniques for internet hosts

Venkata N. Padmanabhan; Lakshminarayanan Subramanian

In this paper, we ask whether it is possible to build an IP address to geographic location mapping service for Internet hosts. Such a service would enable a large and interesting class of location-aware applications. This is a challenging problem because an IP address does not inherently contain an indication of location.We present and evaluate three distinct techniques, collectively referred to as IP2Geo, for determining the geographic location of Internet hosts. The first technique, Geo Track, infers location based on the DNS names of the target host or other nearby network nodes. The second technique, GeoPing, uses network delay measurements from geographically distributed locations to deduce the coordinates of the target host. The third technique, GeoCluster, combines partial (and possibly inaccurate) host-to-location mapping information and BGP prefix information to infer the location of the target host. Using extensive and varied data sets, we evaluate the performance of these techniques and identify fundamental challenges in deducing geographic location from the IP address of an Internet host.


ieee international conference computer and communications | 2006

Analyzing and Improving a BitTorrent Networks Performance Mechanisms

Ashwin R. Bharambe; Cormac Herley; Venkata N. Padmanabhan

In recent years, BitTorrent has emerged as a very scalable peer-to-peer file distribution mechanism. While early measurement and analytical studies have verified BitTorrent’s performance, they have also raised questions about various metrics (upload utilization, fairness, etc.), particularly in settings other than those measured. In this paper, we present a simulationbased study of BitTorrent. Our goal is to deconstruct the system and evaluate the impact of its core mechanisms, both individually and in combination, on overall system performance under a variety of workloads. Our evaluation focuses on several important metrics, including peer link utilization, file download time, and fairness amongst peers in terms of volume of content served. Our results confirm that BitTorrent performs near-optimally in terms of uplink bandwidth utilization, and download time except under certain extreme conditions. We also show that low bandwidth peers can download more than they upload to the network when high bandwidth peers are present. We find that the rate-based tit-for-tat policy is not effective in preventing unfairness. We show how simple changes to the tracker and a stricter, block-based tit-for-tat policy, greatly improves fairness.

Collaboration


Dive into the Venkata N. Padmanabhan's collaboration.

Top Co-Authors

Avatar

Lili Qiu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randy H. Katz

University of California

View shared research outputs
Top Co-Authors

Avatar

Hari Balakrishnan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge