Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkateswaran C. Pillai is active.

Publication


Featured researches published by Venkateswaran C. Pillai.


British Journal of Cancer | 2014

Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system.

Sarah Wheeler; Amanda M. Clark; Donald P. Taylor; Chris Young; Venkateswaran C. Pillai; Donna B. Stolz; Raman Venkataramanan; Douglas A. Lauffenburger; Linda G. Griffith; Alan Wells

Background:Metastatic outgrowth in breast cancer can occur years after a seeming cure. Existing model systems of dormancy are limited as they do not recapitulate human metastatic dormancy without exogenous manipulations and are unable to query early events of micrometastases.Methods:Here, we describe a human ex vivo hepatic microphysiologic system. The system is established with fresh human hepatocytes and non-parenchymal cells (NPCs) creating a microenvironment into which breast cancer cells (MCF7 and MDA-MB-231) are added.Results:The hepatic tissue maintains function through 15 days as verified by liver-specific protein production and drug metabolism assays. The NPCs form an integral part of the hepatic niche, demonstrated within the system through their participation in differential signalling cascades and cancer cell outcomes. Breast cancer cells intercalate into the hepatic niche without interfering with hepatocyte function. Examination of cancer cells demonstrated that a significant subset enter a quiescent state of dormancy as shown by lack of cell cycling (EdU− or Ki67−). The presence of NPCs altered the cancer cell fraction entering quiescence, and lead to differential cytokine profiles in the microenvironment effluent.Conclusions:These findings establish the liver microphysiologic system as a relevant model for the study of breast cancer metastases and entry into dormancy.


Experimental Biology and Medicine | 2014

A Microphysiological System Model of Therapy for Liver Micrometastases

Amanda M. Clark; Sarah Wheeler; Donald P. Taylor; Venkateswaran C. Pillai; Carissa L. Young; Rachelle Prantil-Baun; Transon Nguyen; Donna B. Stolz; Jeffrey T. Borenstein; Douglas A. Lauffenburger; Raman Venkataramanan; Linda G. Griffith; Alan Wells

Metastasis accounts for almost 90% of cancer-associated mortality. The effectiveness of cancer therapeutics is limited by the protective microenvironment of the metastatic niche and consequently these disseminated tumors remain incurable. Metastatic disease progression continues to be poorly understood due to the lack of appropriate model systems. To address this gap in understanding, we propose an all-human microphysiological system that facilitates the investigation of cancer behavior in the liver metastatic niche. This existing LiverChip is a 3D-system modeling the hepatic niche; it incorporates a full complement of human parenchymal and non-parenchymal cells and effectively recapitulates micrometastases. Moreover, this system allows real-time monitoring of micrometastasis and assessment of human-specific signaling. It is being utilized to further our understanding of the efficacy of chemotherapeutics by examining the activity of established and novel agents on micrometastases under conditions replicating diurnal variations in hormones, nutrients and mild inflammatory states using programmable microdispensers. These inputs affect the cues that govern tumor cell responses. Three critical signaling groups are targeted: the glucose/insulin responses, the stress hormone cortisol and the gut microbiome in relation to inflammatory cues. Currently, the system sustains functioning hepatocytes for a minimum of 15 days; confirmed by monitoring hepatic function (urea, α-1-antitrypsin, fibrinogen, and cytochrome P450) and injury (AST and ALT). Breast cancer cell lines effectively integrate into the hepatic niche without detectable disruption to tissue, and preliminary evidence suggests growth attenuation amongst a subpopulation of breast cancer cells. xMAP technology combined with systems biology modeling are also employed to evaluate cellular crosstalk and illustrate communication networks in the early microenvironment of micrometastases. This model is anticipated to identify new therapeutic strategies for metastasis by elucidating the paracrine effects between the hepatic and metastatic cells, while concurrently evaluating agent efficacy for metastasis, metabolism and tolerability.


Xenobiotica | 2012

Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes

Shimin Zhang; Venkateswaran C. Pillai; Sripal Reddy Mada; Steve Strom; Raman Venkataramanan

Azole antifungal agents are known to inhibit cytochrome P450 3A (CYP3A) enzymes. Limited information is available regarding the effect of voriconazole on CYP3A activity. We examined the effect of voriconazole on CYP3A activity in human liver microsomes as measured by the formation of 6β-hydroxytestosterone from testosterone. We also evaluated the interaction between voriconazole and tacrolimus, an immunosuppressive drug, using human liver microsomes. The effect of voriconazole on CYP3A activity and tacrolimus metabolism was compared to that of other azole antifungal agents. CYP3A4 activity and the metabolism of tacrolimus were measured in the absence and in the presence of various concentrations of voriconazole (0–1.43 mM), fluconazole (0–1.63 mM), itraconazole (0–14 µM) and ketoconazole (0–0.19 µM). At a concentration of 21.2 ± 15.4 µM and 29.8 ± 12.3 µM, voriconazole inhibited the formation of 6β-hydroxytestosterone from testosterone and the metabolism of tacrolimus by 50%, respectively. The rank order of inhibition of 6β-hydroxytestosterone formation from testosterone and the metabolism of tacrolimus, is ketoconazole > itraconazole > voriconazole > fluconazole. Our observations suggest that voriconazole at clinically relevant concentrations will inhibit the hepatic metabolism of tacrolimus and increase the concentration of tacrolimus more than two-fold. Close monitoring of the blood concentrations and adjustment in the dose of tacrolimus are warranted when transplant patients receiving tacrolimus are treated with voriconazole.


Journal of Pharmaceutical and Biomedical Analysis | 2013

A sensitive and specific CYP cocktail assay for the simultaneous assessment of human cytochrome P450 activities in primary cultures of human hepatocytes using LC–MS/MS

Venkateswaran C. Pillai; Stephen C. Strom; Steve N. Caritis; Raman Venkataramanan

A sensitive and specific CYP cocktail assay for simultaneous measurement of the activities of major human cytochrome P450 enzymes (CYP1A2 (phenacetin), CYP3A4/5 (midazolam), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin) and CYP2D6 (dextromethorphan)) in primary cultures of human hepatocytes, was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Hepatocyte incubation medium was processed by a solid phase extraction (SPE) using Oasis SPE extraction cartridges prior to chromatography. The metabolites derived from each of the substrates were simultaneously quantitated using the corresponding stable isotope-labeled internal standards by a positive electrospray ionization mode using multiple reactions monitoring with a single eight minute run. The mean accuracy was in the range of 98-114%. The interday and intraday precision over the concentration ranges evaluated for all the analytes were lower than 15%, and 14%, respectively. All the generated metabolites were stable under the conditions used for sample analysis. Additionally, the interaction of a cocktail substrate on other CYP substrates was also analyzed. Due to substantial inter-substrate interaction, chlorzoxazone (CYP2E1) and bupropion (CYP2B6) were removed from the initial seven probes CYP cocktail assay. Therefore, the final CYP cocktail assay consisting of five probes provides a robust method to simultaneously measure activities of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5 in primary cultures of human hepatocytes.


Stem Cell Research & Therapy | 2013

All-human microphysical model of metastasis therapy

Sarah Wheeler; Jeffrey T. Borenstein; Amanda M. Clark; Mohammad Reza Ebrahimkhani; Ira J. Fox; Linda G. Griffith; Walker Inman; Douglas A. Lauffenburger; Transon Nguyen; Venkateswaran C. Pillai; Rachelle Prantil-Baun; Donna B. Stolz; Donald P. Taylor; Theresa Ulrich; Raman Venkataramanan; Alan Wells; Carissa L. Young

The vast majority of cancer mortalities result from distant metastases. The metastatic microenvironment provides unique protection to ectopic tumors as the primary tumors often respond to specific agents. Although significant interventional progress has been made on primary tumors, the lack of relevant accessible model in vitro systems in which to study metastases has plagued metastatic therapeutic development - particularly among micrometastases. A real-time, all-human model of metastatic seeding and cancer cells that recapitulate metastatic growth and can be probed in real time by a variety of measures and challenges would provide a critical window into the pathophysiology of metastasis and pharmacology of metastatic tumor resistance. To achieve this we are advancing our microscale bioreactor that incorporates human hepatocytes, human nonparenchymal liver cells, and human breast cancer cells to mimic the hepatic niche in three dimensions with functional tissue. This bioreactor is instrumented with oxygen sensors, micropumps capable of generating diurnally varying profiles of nutrients and hormones, while enabling real-time sampling. Since the liver is a major metastatic site for a wide variety of carcinomas and other tumors, this bioreactor uniquely allows us to more accurately recreate the human metastatic microenvironment and probe the paracrine effects between the liver parenchyma and metastatic cells. Further, as the liver is the principal site of xenobiotic metabolism, this reactor will help us investigate the chemotherapeutic response within a metabolically challenged liver microenvironment. This model is anticipated to yield markers of metastatic behavior and pharmacologic metabolism that will enable better clinical monitoring, and will guide the design of clinical studies to understand drug efficacy and safety in cancer therapeutics. This highly instrumented bioreactor format, hosting a growing tumor within a microenvironment and monitoring its responses, is readily transferable to other organs, giving this work impact beyond the liver.


Drug Metabolism and Disposition | 2013

Ritonavir and Efavirenz Significantly Alter the Metabolism of Erlotinib—an Observation in Primary Cultures of Human Hepatocytes That Is Relevant to HIV Patients with Cancer

Venkateswaran C. Pillai; Raman Venkataramanan; Robert A. Parise; Susan M. Christner; Roberto Gramignoli; Stephen C. Strom; Michelle A. Rudek; Jan H. Beumer

Erlotinib is approved for the treatment of non–small cell lung and pancreatic cancers, and is metabolized by CYP3A4. Inducers and inhibitors of CYP3A enzymes such as ritonavir and efavirenz, respectively, may be used as part of the highly active antiretroviral therapy drugs to treat patients with human immunodeficiency virus (HIV). When HIV patients with a malignancy need treatment with erlotinib, there is a potential of as-yet-undefined drug-drug interaction. We evaluated these interactions using human hepatocytes benchmarked against the interaction of erlotinib with ketoconazole and rifampin, the archetype cytochrome P450 inhibitor and inducer, respectively. Hepatocytes were treated with vehicle [0.1% dimethylsulfoxide, ritonavir (10 μM)], ketoconazole (10 μM), efavirenz (10 μM), or rifampin (10 μM) for 4 days. On day 5, erlotinib (5 μM) was incubated with the above agents for another 24–48 hours. Concentrations of erlotinib and O-desmethyl erlotinib were quantitated in collected samples (combined lysate and medium) using liquid chromatography and tandem mass spectrometry. The half-life (t1/2) of erlotinib increased from 10.6 ± 2.6 to 153 ± 80 and 23.9 ± 4.8 hours, respectively, upon treatment with ritonavir and ketoconazole. The apparent intrinsic clearance (CLint, app) of erlotinib was lowered 16-fold by ritonavir and 1.9-fold by ketoconazole. Efavirenz and rifampin decreased t1/2 of erlotinib from 10.3 ± 1.1 to 5.0 ± 1.5 and 3.4 ± 0.2 hours, respectively. Efavirenz and rifampin increased the CLint, app of erlotinib by 2.2- and 2-fold, respectively. Our results suggest that to achieve desired drug exposure, the clinically used dose (150 mg daily) of erlotinib may have to be significantly reduced (25 mg every other day) or increased (300 mg daily), respectively, when ritonavir or efavirenz is coadministered.


Aaps Journal | 2013

Population Pharmacokinetics of Cyclosporine in Transplant Recipients

Kelong Han; Venkateswaran C. Pillai; Raman Venkataramanan

A number of classical pharmacokinetic studies have been conducted in transplant patients. However, they suffer from some limitations, for example, (1) the study design was limited to intense blood sampling in small groups of patients during a certain posttransplant period, (2) patient factors were evaluated one at a time to identify their association with the pharmacokinetic parameters, and (3) mean pharmacokinetic parameters often cannot be precisely estimated due to large intraindividual variability. Population pharmacokinetics provides a potential means of addressing these limitations and is a powerful tool to evaluate the magnitude and consistency of drug exposure. Population pharmacokinetic studies of cyclosporine focused solely on developing limited sampling strategies and Bayesian estimators to estimate drug exposure, have been summarized before, and are, therefore, not a subject of this review. The major focus of this review is to describe factors (demographic factors, hepatic and gastrointestinal functions, drug–drug interactions, genetic polymorphisms of drug metabolizing enzymes and transporters) that have been identified to contribute to the large portion of observed variability in the pharmacokinetics of cyclosporine in transplant patients. This review summarizes and interprets the conclusions as well as the nonlinear mixed-effects modeling methodologies used in such studies. A highly diversified collection of structural models, variability models, and covariate submodels have been evaluated and validated using internal or external validation methods. This review also highlights areas where additional research is warranted to improve the models since a portion of model variability still remains unexplained.


British Journal of Clinical Pharmacology | 2015

Population pharmacokinetics of oseltamivir in non-pregnant and pregnant women

Venkateswaran C. Pillai; Kelong Han; Richard H. Beigi; Gary D.V. Hankins; Shannon Clark; Mary F. Hebert; Thomas R. Easterling; Anne Zajicek; Zhaoxia Ren; Steve N. Caritis; Raman Venkataramanan

AIMS Physiological changes in pregnancy are expected to alter the pharmacokinetics of various drugs. The objective of this study was to evaluate systematically the pharmacokinetics of oseltamivir (OS), a drug used in the treatment of influenza during pregnancy. METHODS A multicentre steady-state pharmacokinetic study of OS was performed in 35 non-pregnant and 29 pregnant women. Plasma concentration-time profiles were analyzed using both non-compartmental and population pharmacokinetic modelling (pop PK) and simulation approaches. A one compartment population pharmacokinetic model with first order absorption and elimination adequately described the pharmacokinetics of OS. RESULTS The systemic exposure of oseltamivir carboxylate (OC, active metabolite of OS) was reduced approximately 30 (19-36)% (P < 0.001) in pregnant women. Pregnancy significantly (P < 0.001) influenced the clearance (CL/F) and volume of distribution (V/F) of OC. Both non-compartmental and population pharmacokinetic approaches documented approximately 45 (23-62)% increase in clearance (CL/F) of OC during pregnancy. CONCLUSION Based on the decrease in exposure of the active metabolite, the currently recommended doses of OS may need to be increased modestly in pregnant women in order to achieve comparable exposure with that of non-pregnant women.


British Journal of Clinical Pharmacology | 2015

Human hepatocyte assessment of imatinib drug-drug interactions - Complexities in clinical translation

Jan H. Beumer; Venkateswaran C. Pillai; Robert A. Parise; Susan M. Christner; Brian F. Kiesel; Michelle A. Rudek; Raman Venkataramanan

AIM Inducers and inhibitors of CYP3A, such as ritonavir and efavirenz, may be used as part of the highly active antiretroviral therapy (HAART) to treat HIV patients. HIV patients with chronic myeloid leukemia or gastrointestinal stromal tumour may need imatinib, a CYP3A4 substrate with known exposure response-relationships. Administration of imatinib to patients on ritonavir or efavirenz may result in altered imatinib exposure leading to increased toxicity or failure of therapy, respectively. We used primary human hepatocyte cultures to evaluate the magnitude of interaction between imatinib and ritonavir/efavirenz. METHODS Hepatocytes were pre-treated with vehicle, ritonavir, ketoconazole, efavirenz or rifampicin, and the metabolism of imatinib was characterized over time. Concentrations of imatinib and metabolite were quantitated in combined lysate and medium, using LC-MS. RESULTS The predicted changes in imatinib CLoral (95% CI) with ketoconazole, ritonavir, rifampicin and efavirenz were 4.0-fold (0, 9.2) lower, 2.8-fold (0.04, 5.5) lower, 2.9-fold (2.2, 3.5) higher and 2.0-fold (0.42, 3.5) higher, respectively. These predictions were in good agreement with clinical single dose drug-drug interaction studies, but not with reports of imatinib interactions at steady-state. Alterations in metabolism were similar after acute or chronic imatinib exposure. CONCLUSIONS In vitro human hepatocytes predicted increased clearance of imatinib with inducers and decreased clearance with inhibitors of CYP enzymes. The impact of HAART on imatinib may depend on whether it is being initiated or has already been dosed chronically in patients. Therapeutic drug monitoring may have a role in optimizing imatinib therapy in this patient population.


The Journal of Clinical Pharmacology | 2014

Potential interactions between HIV drugs, ritonavir and efavirenz and anticancer drug, nilotinib—a study in primary cultures of human hepatocytes that is applicable to HIV patients with cancer

Venkateswaran C. Pillai; Robert A. Parise; Susan M. Christner; Michelle A. Rudek; Jan H. Beumer; Raman Venkataramanan

Nilotinib is used to treat chronic myeloid leukemia (CML), and is metabolized by CYP3A. With a black‐box warning for QT prolongation, which is exposure dependent, controlling for drug interactions is clinically relevant. Treatments of HIV patients with CML are with HAART drugs, ritonavir and efavirenz, may cause complex drug interactions through CYP3A inhibition or induction. We evaluated the interactions of ritonavir or efavirenz on nilotinib using human hepatocytes and compared these interactions with those of ketoconazole or rifampin, classical CYP3A inhibitor and inducer, respectively. Hepatocytes were treated with vehicle, ritonavir (10 μM), ketoconazole (10 μM), efavirenz (10 μM), or rifampin (10 μM) for 5 days. On day 5, nilotinib (3 μM) was coincubated for an additional 24–48 hours. The concentrations of nilotinib were quantitated in collected samples (combined lysate and medium) by LC‐MS. Apparent intrinsic clearance (CLint,app) of nilotinib was lowered 5.8‐ and 3.1‐fold, respectively, by ritonavir and ketoconazole. Efavirenz and rifampin increased the CLint,app of nilotinib by 2.1‐ and 4.1‐fold, respectively. The clinically recommended dose (300 mg twice daily) of nilotinib may have to be reduced substantially (150 mg once daily) or increased (400 mg thrice daily), respectively, to achieve desired drug exposure, when ritonavir or efavirenz is co‐administered.

Collaboration


Dive into the Venkateswaran C. Pillai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Wells

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna B. Stolz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Lauffenburger

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Linda G. Griffith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sarah Wheeler

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Carissa L. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan H. Beumer

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge