Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera A. Cherkasova is active.

Publication


Featured researches published by Vera A. Cherkasova.


The EMBO Journal | 2007

N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection

Christie A. Fekete; Sarah F. Mitchell; Vera A. Cherkasova; Drew Applefield; Mikkel A. Algire; David Maag; Adesh K. Saini; Jon R. Lorsch; Alan G. Hinnebusch

Translation initiation factor eIF1A stimulates preinitiation complex (PIC) assembly and scanning, but the molecular mechanisms of its functions are not understood. We show that the F131A,F133A mutation in the C‐terminal tail (CTT) of eIF1A impairs recruitment of the eIF2‐GTP‐Met‐tRNAiMet ternary complex to 40S subunits, eliminating functional coupling with eIF1. Mutating residues 17–21 in the N‐terminal tail (NTT) of eIF1A also reduces PIC assembly, but in a manner rescued by eIF1. Interestingly, the 131,133 CTT mutation enhances initiation at UUG codons (Sui− phenotype) and decreases leaky scanning at AUG, while the NTT mutation 17–21 suppresses the Sui− phenotypes of eIF5 and eIF2β mutations and increases leaky scanning. These findings and the opposite effects of the mutations on eIF1A binding to reconstituted PICs suggest that the NTT mutations promote an open, scanning‐conducive conformation of the PIC, whereas the CTT mutations 131,133 have the reverse effect. We conclude that tight binding of eIF1A to the PIC is an important determinant of AUG selection and is modulated in opposite directions by residues in the NTT and CTT of eIF1A.


Molecular and Cellular Biology | 2013

Lack of tRNA Modification Isopentenyl-A37 Alters mRNA Decoding and Causes Metabolic Deficiencies in Fission Yeast

Tek N. Lamichhane; Nathan H. Blewett; Amanda K. Crawford; Vera A. Cherkasova; James R. Iben; Thomas J. Begley; Philip J. Farabaugh; Richard J. Maraia

ABSTRACT tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.


Molecular and Cellular Biology | 2010

Snf1 Promotes Phosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2 by Activating Gcn2 and Inhibiting Phosphatases Glc7 and Sit4

Vera A. Cherkasova; Hongfang Qiu; Alan G. Hinnebusch

ABSTRACT Snf1 is the ortholog of mammalian AMP-activated kinase and is responsible for activation of glucose-repressed genes at low glucose levels in budding yeast. We show that Snf1 promotes the formation of phosphorylated α subunit of eukaryotic translation initiation factor 2 (eIF2α-P), a regulator of general and gene-specific translation, by stimulating the function of eIF2α kinase Gcn2 during histidine starvation of glucose-grown cells. Thus, eliminating Snf1 or mutating its activation loop lowers Gcn2 kinase activity, reducing the autophosphorylation of Thr-882 in the Gcn2 activation loop, and decreases eIF2α-P levels in starved cells. Consistently, eliminating Reg1, a negative regulator of Snf1, provokes Snf1-dependent hyperphosphorylation of both Thr-882 and eIF2α. Interestingly, Snf1 also promotes eIF2α phosphorylation in the nonpreferred carbon source galactose, but this occurs by inhibition of protein phosphatase 1α (PP1α; Glc7) and the PP2A-like enzyme Sit4, rather than activation of Gcn2. Both Glc7 and Sit4 physically interact with eIF2α in cell extracts, supporting their direct roles as eIF2α phosphatases. Our results show that Snf1 modulates the level of eIF2α phosphorylation by different mechanisms, depending on the kind of nutrient deprivation existing in cells.


Current Biology | 2003

A Novel Functional Link between MAP Kinase Cascades and the Ras/cAMP Pathway that Regulates Survival

Vera A. Cherkasova; Ryan McCully; Yunmei Wang; Alan G. Hinnebusch; Elaine A. Elion

In mammalian cells, Ras regulates multiple effectors, including activators of mitogen-activated protein kinase (MAPK) cascades, phosphatidylinositol-3-kinase, and guanine nucleotide exchange factors (GEFs) for RalGTPases. In S. cerevisiae, Ras regulates the Kss1 MAPK cascade that promotes filamentous growth and cell integrity, but its major function is to activate adenylyl cyclase and control proliferation and survival ([; see Figure S1 in the Supplemental Data available with this article online). Previous work hints that the mating Fus3/Kss1 MAPK cascade cross-regulates the Ras/cAMP pathway during growth and mating, but direct evidence is lacking. Here, we report that Kss1 and Fus3 act upstream of the Ras/cAMP pathway to regulate survival. Loss of Fus3 increases cAMP and causes poor long-term survival and resistance to stress. These effects are dependent on Kss1 and Ras2. Activation of Kss1 by a hyperactive Ste11 MAPKKK also increases cAMP, but mating receptor/scaffold activation has little effect and may therefore insulate the MAPKs from cross-regulation. Catalytically inactive Fus3 represses cAMP by blocking accumulation of active Kss1 and by another function also shared by Kss1. The conserved RasGEF Cdc25 is a likely control point, because Kss1 and Fus3 complexes associate with and phosphorylate Cdc25. Cross-regulation of Cdc25 may be a general way that MAPKs control Ras signaling networks.


PLOS Genetics | 2015

RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

Aneeshkumar G. Arimbasseri; Nathan H. Blewett; James R. Iben; Tek N. Lamichhane; Vera A. Cherkasova; Markus Hafner; Richard J. Maraia

Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP) III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR) that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m2 2G26) modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m2 2G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m2 2G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m2 2G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m2 2G26 modification and that this response is conserved among highly divergent yeasts and human cells.


RNA | 2014

Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy

Pilar Martin-Marcos; Jagpreet S. Nanda; Rafael E. Luna; Fan Zhang; Adesh K. Saini; Vera A. Cherkasova; Gerhard Wagner; Jon R. Lorsch; Alan G. Hinnebusch

In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and β-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.


Molecular Biology of the Cell | 2012

Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p

Vera A. Cherkasova; Luis López Maury; Dagmar Bacikova; Kevin Pridham; Jürg Bähler; Richard J. Maraia

The La protein controls pre-tRNA metabolism in nuclei. Deletion of Schizosaccharomyces pombe La leads to altered pre-tRNA metabolism and up-regulation of amino acid genes and nutrient-sensitive growth defects, accompanied by apparently inefficient tRNA nuclear export. These sla1-Δ phenotypes are suppressed by modest overexpression of the tRNA nuclear export factor Los1p.


Genes & Development | 2003

Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2

Vera A. Cherkasova; Alan G. Hinnebusch


Genetics | 1999

Fus3p and Kss1p Control G1 Arrest in Saccharomyces cerevisiae Through a Balance of Distinct Arrest and Proliferative Functions That Operate in Parallel With Far1p

Vera A. Cherkasova; David M. Lyons; Elaine A. Elion


Journal of Biological Chemistry | 2002

Serine 577 Is Phosphorylated and Negatively Affects the tRNA Binding and eIF2α Kinase Activities of GCN2

Minerva T. Garcia-Barrio; Jinsheng Dong; Vera A. Cherkasova; Xiaolong Zhang; Fan Zhang; Sandra Ufano; Ruby Lai; Jun Qin; Alan G. Hinnebusch

Collaboration


Dive into the Vera A. Cherkasova's collaboration.

Top Co-Authors

Avatar

Alan G. Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James R. Iben

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nathan H. Blewett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard J. Maraia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tek N. Lamichhane

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adesh K. Saini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amanda K. Crawford

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge