Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera Alexeeva is active.

Publication


Featured researches published by Vera Alexeeva.


The Journal of Neuroscience | 2007

From Hunger to Satiety: Reconfiguration of a Feeding Network by Aplysia Neuropeptide Y

Jian Jing; Ferdinand S. Vilim; Charles C. Horn; Vera Alexeeva; Nathan G. Hatcher; Kosei Sasaki; Irene Yashina; Yuriy Zhurov; Irving Kupfermann; Jonathan V. Sweedler; Klaudiusz R. Weiss

A shift in motivational state often produces behavioral change, but the underlying mechanisms are poorly understood. In the marine mollusc, Aplysia californica, feeding-induced transition from a hunger to satiation state leads to a slowdown and an eventual termination of feeding. Because the multifunctional feeding network generates both ingestion and the competing response, egestion, it is possible that the transition from a hunger to a satiety state is associated with network reconfiguration that results in production of fewer ingestive and more egestive responses. Chronic electrophysiological recordings in free-feeding Aplysia showed that as the meal progressed, food elicited fewer ingestive responses and simultaneously increased the number of egestive responses. Injections of Aplysia neuropeptide Y (apNPY) reduced food intake and slowed down the rate of ingestion. apNPY was localized to buccal-ganglion afferents originating in the gut-innervating esophageal nerve (EN), a nerve involved both in satiation and in the generation of egestive programs. During EN stimulation, apNPY was released in the feeding circuit. Importantly, stimulation of the cerebral-buccal interneuron-2, a command-like interneuron that is activated by food and normally elicits ingestive responses, elicited egestive responses in the presence of apNPY. This was accompanied by increased activity of the egestion-promoting interneuron B20 and decreased activity in the ingestion-promoting interneuron B40. Thus, apNPYergic reconfiguration of the feeding central pattern generator plays a role in the gradual transition from hunger to satiety states. More generally, changes in the motivational states may involve not only simple network inhibition but may also require network reconfiguration.


The Journal of Neuroscience | 2010

Feedforward Compensation Mediated by the Central and Peripheral Actions of a Single Neuropeptide Discovered Using Representational Difference Analysis

Jian Jing; Jonathan V. Sweedler; Elizabeth C. Cropper; Vera Alexeeva; Ji Ho Park; Elena V. Romanova; Fang Xie; Nikolai C. Dembrow; Bjoern Ch. Ludwar; Klaudiusz R. Weiss; Ferdinand S. Vilim

Compensatory mechanisms are often used to achieve stability by reducing variance, which can be accomplished via negative feedback during homeostatic regulation. In principle, compensation can also be implemented through feedforward mechanisms where a regulator acts to offset the anticipated output variation; however, few such neural mechanisms have been demonstrated. We provide evidence that an Aplysia neuropeptide, identified using an enhanced representational difference analysis procedure, implements feedforward compensation within the feeding network. We named the novel peptide “allatotropin-related peptide” (ATRP) because of its similarity to insect allatotropin. Mass spectrometry confirmed the peptides identity, and in situ hybridization and immunostaining mapped its distribution in the Aplysia CNS. ATRP is present in the higher-order cerebral-buccal interneuron (CBI) CBI-4, but not in CBI-2. Previous work showed that CBI-4-elicited motor programs have a shorter protraction duration than those elicited by CBI-2. Here we show that ATRP shortens protraction duration of CBI-2-elicited ingestive programs, suggesting a contribution of ATRP to the parametric differences between CBI-4-evoked and CBI-2-evoked programs. Importantly, because Aplysia muscle contractions are a graded function of motoneuronal activity, one consequence of the shortening of protraction is that it can weaken protraction movements. However, this potential weakening is offset by feedforward compensatory actions exerted by ATRP. Centrally, ATRP increases the activity of protraction motoneurons. Moreover, ATRP is present in peripheral varicosities of protraction motoneurons and enhances peripheral motoneuron-elicited protraction muscle contractions. Therefore, feedforward compensatory mechanisms mediated by ATRP make it possible to generate a faster movement with an amplitude that is not greatly reduced, thereby producing stability.


Journal of Neurochemistry | 2001

Cerebrin prohormone processing, distribution and action in Aplysia californica

Lingjun Li; Philip D. Floyd; Stanislav S. Rubakhin; Elena V. Romanova; Jian Jing; Vera Alexeeva; Nikolai C. Dembrow; K. R. Weiss; Ferdinand S. Vilim; Jonathan V. Sweedler

The isolation, characterization, and bioactivity in the feeding circuitry of a novel neuropeptide in the Aplysia californica central nervous system are reported. The 17‐residue amidated peptide, NGGTADALYNLPDLEKIamide, has been termed cerebrin due to its primary location in the cerebral ganglion. Liquid chromatographic purification guided by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry allowed the isolation of the peptide with purity adequate for Edman sequencing. The cerebrin cDNA has been characterized and encodes an 86 amino acid prohormone that predicts cerebrin and one additional peptide. Mapping using in situ hybridization and immunocytochemistry showed that cerebrin containing neuronal somata are localized almost exclusively in the cerebral ganglion, mostly in the F‐ and C‐clusters. Both immunostaining and mass spectrometry demonstrated the presence of cerebrin in the neurohemal region of the upper labial nerve. In addition, immunoreactive processes were detected in the neuropil of all of the ganglia, including the buccal ganglia, and in some interganglionic connectives, including the cerebral‐buccal connective. This suggests that cerebrin may also function as a local signaling molecule. Cerebrin has a profound effect on the feeding motor pattern elicited by the command‐like neuron CBI‐2, dramatically shortening the duration of the radula protraction in a concentration‐dependent manner, mimicking the motor‐pattern alterations observed in food induced arousal states. These findings suggest that cerebrin may contribute to food‐induced arousal in the animal. Cerebrin‐like immunoreactivity is also present in Lymnaea stagnalis suggesting that cerebrin‐like peptides may be widespread throughout gastropoda.


The Journal of Neuroscience | 2010

Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors

Ferdinand S. Vilim; Kosei Sasaki; Jurgen Rybak; Vera Alexeeva; Elizabeth C. Cropper; Jian Jing; Irina V. Orekhova; Vladimir Brezina; David A. Price; Elena V. Romanova; Stanislav S. Rubakhin; Nathan G. Hatcher; Jonathan V. Sweedler; Klaudiusz R. Weiss

Many bioactive neuropeptides containing RFamide at their C terminus have been described in both invertebrates and vertebrates. To obtain insight into the functional logic of RFamide signaling, we investigate it here in the feeding system of Aplysia. We focus on the expression, localization, and actions of two families of RFamide peptides, the FRFamides and FMRFamide, in the central neuronal circuitry and the peripheral musculature that generate the feeding movements. We describe the cloning of the FRFamide precursor protein and show that the FRFamides and FMRFamide are derived from different precursors. We map the expression of the FRFamide and FMRFamide precursors in the feeding circuitry using in situ hybridization and immunostaining and confirm proteolytic processing of the FRFamide precursor by mass spectrometry. We show that the two precursors are expressed in different populations of sensory neurons in the feeding system. In a representative feeding muscle, we demonstrate the presence of both FRFamides and FMRFamide and their release, probably from the processes of the sensory neurons in the muscle. Both centrally and in the periphery, the FRFamides and FMRFamide act in distinct ways, apparently through distinct mechanisms, and nevertheless, from an overall functional perspective, their actions are complementary. Together, the FRFamides and FMRFamide convert feeding motor programs from ingestive to egestive and depress feeding muscle contractions. We conclude that these structurally related peptides, although derived from different precursors, expressed in different neurons, and acting through different mechanisms, remain related to each other in the functional roles that they play in the system.


Peptides | 2001

Cloning, expression and processing of the CP2 neuropeptide precursor of Aplysia

Ferdinand S. Vilim; Vera Alexeeva; Leonid L. Moroz; Lingjun Li; Tatiana P. Moroz; Jonathan V. Sweedler; K. R. Weiss

The cDNA sequence encoding the CP2 neuropeptide precursor is identified and encodes a single copy of the neuropeptide that is flanked by appropriate processing sites. The distribution of the CP2 precursor mRNA is described and matches the CP2-like immunoreactivity described previously. Single cell RT-PCR independently confirms the presence of CP2 precursor mRNA in selected neurons. MALDI-TOF MS is used to identify additional peptides derived from the CP2 precursor in neuronal somata and nerves, suggesting that the CP2 precursor may give rise to additional bioactive neuropeptides.


The Journal of Neuroscience | 2005

Identification of a new neuropeptide precursor reveals a novel source of extrinsic modulation in the feeding system of aplysia

Alex Proekt; Ferdinand S. Vilim; Vera Alexeeva; Vladimir Brezina; Allyson K. Friedman; Jian Jing; Lingjun Li; Yuriy Zhurov; Jonathan V. Sweedler; K. R. Weiss

The Aplysia feeding system is advantageous for investigating the role of neuropeptides in behavioral plasticity. One family of Aplysia neuropeptides is the myomodulins (MMs), originally purified from one of the feeding muscles, the accessory radula closer (ARC). However, two MMs, MMc and MMe, are not encoded on the only known MM gene. Here, we identify MM gene 2 (MMG2), which encodes MMc and MMe and four new neuropeptides. We use matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to verify that these novel MMG2-derived peptides (MMG2-DPs), as well as MMc and MMe, are synthesized from the precursor. Using antibodies against the MMG2-DPs, we demonstrate that neuronal processes that stain for MMG2-DPs are found in the buccal ganglion, which contains the feeding network, and in the buccal musculature including the ARC muscle. Surprisingly, however, no immunostaining is observed in buccal neurons including the ARC motoneurons. In situ hybridization reveals only few MMG2-expressing neurons that are mostly located in the pedal ganglion. Using immunohistochemical and electrophysiological techniques, we demonstrate that some of these pedal neurons project to the buccal ganglion and are the likely source of the MMG2-DP innervation of the feeding network and musculature. We show that the MMG2-DPs are bioactive both centrally and peripherally: they bias egestive feeding programs toward ingestive ones, and they modulate ARC muscle contractions. The multiple actions of the MMG2-DPs suggest that these peptides play a broad role in behavioral plasticity and that the pedal-buccal projection neurons that express them are a novel source of extrinsic modulation of the feeding system of Aplysia.


Journal of Biological Chemistry | 2013

Characterization of GdFFD, a d-Amino Acid-containing Neuropeptide That Functions as an Extrinsic Modulator of the Aplysia Feeding Circuit

Lu Bai; Itamar Livnat; Elena V. Romanova; Vera Alexeeva; Peter M. Yau; Ferdinand S. Vilim; Klaudiusz R. Weiss; Jian Jing; Jonathan V. Sweedler

Background: l-to-d conversion of an amino acid in a neuropeptide can be required for bioactivity. Results: A new d-amino acid-containing peptide (DAACP), GdFFD, shows stereospecific bioactivity in the feeding circuit. Conclusion: Our findings broaden the importance of this unusual post-translational modification, providing new methods to accelerate DAACP discovery. Significance: GdFFD is the first DAACP showing bioactivity in a well defined circuit. During eukaryotic translation, peptides/proteins are created using l-amino acids. However, a d-amino acid-containing peptide (DAACP) can be produced through post-translational modification via an isomerase enzyme. General approaches to identify novel DAACPs and investigate their function, particularly in specific neural circuits, are lacking. This is primarily due to the difficulty in characterizing this modification and due to the limited information on neural circuits in most species. We describe a multipronged approach to overcome these limitations using the sea slug Aplysia californica. Based on bioinformatics and homology to known DAACPs in the land snail Achatina fulica, we targeted two predicted peptides in Aplysia, GFFD, similar to achatin-I (GdFAD versus GFAD, where dF stands for d-phenylalanine), and YAEFLa, identical to fulyal (YdAEFLa versus YAEFLa), using stereoselective analytical methods, i.e. MALDI MS fragmentation analysis and LC-MS/MS. Although YAEFLa in Aplysia was detected only in an all l-form, we found that both GFFD and GdFFD were present in the Aplysia CNS. In situ hybridization and immunolabeling of GFFD/GdFFD-positive neurons and fibers suggested that GFFD/GdFFD might act as an extrinsic modulator of the feeding circuit. Consistent with this hypothesis, we found that GdFFD induced robust activity in the feeding circuit and elicited egestive motor patterns. In contrast, the peptide consisting of all l-amino acids, GFFD, was not bioactive. Our data indicate that the modification of an l-amino acid-containing neuropeptide to a DAACP is essential for peptide bioactivity in a motor circuit, and thus it provides a functional significance to this modification.


PLOS ONE | 2012

Urotensin II in Invertebrates: From Structure to Function in Aplysia californica

Elena V. Romanova; Kosei Sasaki; Vera Alexeeva; Ferdinand S. Vilim; Jian Jing; Timothy A. Richmond; Klaudiusz R. Weiss; Jonathan V. Sweedler

Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan.


The Journal of Neuroscience | 2015

Functional Characterization of a Vesicular Glutamate Transporter in an Interneuron That Makes Excitatory and Inhibitory Synaptic Connections in a Molluscan Neural Circuit

Jian Jing; Vera Alexeeva; Song-an Chen; Ke Yu; Michael R. Due; X Li-nuo Tan; Ting-ting Chen; Dan-dan Liu; Elizabeth C. Cropper; Ferdinand S. Vilim; Klaudiusz R. Weiss

Understanding circuit function requires the characterization of component neurons and their neurotransmitters. Previous work on radula protraction in the Aplysia feeding circuit demonstrated that critical neurons initiate feeding via cholinergic excitation. In contrast, it is less clear how retraction is mediated at the interneuronal level. In particular, glutamate involvement was suggested, but was not directly confirmed. Here we study a suspected glutamatergic retraction interneuron, B64. We used the representational difference analysis (RDA) method to successfully clone an Aplysia vesicular glutamate transporter (ApVGLUT) from B64 and from a glutamatergic motor neuron B38. Previously, RDA was used to characterize novel neuropeptides. Here we demonstrate its utility for characterizing other types of molecules. Bioinformatics suggests that ApVGLUT is more closely related to mammalian VGLUTs than to Drosophila and Caenorhabditis elegans VGLUTs. We expressed ApVGLUT in a cell line, and demonstrated that it indeed transports glutamate in an ATP and proton gradient-dependent manner. We mapped the ApVGLUT distribution in the CNS using in situ hybridization and immunocytochemistry. Further, we demonstrated that B64 is ApVGLUT positive, supporting the idea that it is glutamatergic. Although glutamate is primarily an excitatory transmitter in the mammalian CNS, B64 elicits inhibitory PSPs in protraction neurons to terminate protraction and excitatory PSPs in retraction neurons to maintain retraction. Pharmacological data indicated that both types of PSPs are mediated by glutamate. Thus, glutamate mediates the dual function of B64 in Aplysia. More generally, our systematic approaches based on RDA may facilitate analyses of transmitter actions in small circuits with identifiable neurons.


Stem Cell Research | 2016

A human MIXL1 green fluorescent protein reporter embryonic stem cell line engineered using TALEN-based genome editing

Vera Alexeeva; Sunita L. D'Souza; Christoph Schaniel

We have generated a MIXL1-eGFP reporter human embryonic stem cell (hESC) line using TALEN-based genome engineering. This line accurately traces endogenous MIXL1 expression via an eGFP reporter to mesendodermal precursor cells. The utility of the MIXL1-eGFP reporter hESC line lies in the prospective isolation, lineage tracing, and developmental and mechanistic studies of MIXL1+ cell populations.

Collaboration


Dive into the Vera Alexeeva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. R. Weiss

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lingjun Li

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nikolai C. Dembrow

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin G. Evans

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Itay Hurwitz

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge