Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera Michel is active.

Publication


Featured researches published by Vera Michel.


Asian Journal of Andrology | 2015

Epididymitis: revelations at the convergence of clinical and basic sciences

Vera Michel; Adrian Pilatz; Mark P. Hedger; Andreas Meinhardt

Acute epididymitis represents a common medical condition in the urological outpatient clinic. Mostly, epididymitis is caused by bacterial ascent through the urogenital tract, with pathogens originating either from sexually transmitted diseases or urinary tract infections. Although conservative antimicrobial therapy is possible in the majority of patients and is usually sufficient to eradicate the pathogen, studies have shown persistent oligozoospermia and azoospermia in up to 40% of these patients. Animal models of epididymitis are created to delineate the underlying reasons for this observation and the additional impairment of sperm function that is often associated with the disease. Accumulated data provide evidence of a differential expression of immune cells, immunoregulatory genes and pathogen-sensing molecules along the length of the epididymal duct. The evidence suggests that a tolerogenic environment exists in the caput epididymidis, but that inflammatory responses are most intense toward the cauda epididymidis. This is consistent with the need to provide protection for the neo-antigens of spermatozoa emerging from the testis, without compromising the ability to respond to ascending infections. However, severe inflammatory responses, particularly in the cauda, may lead to collateral damage to the structure and function of the epididymis. Convergence of the clinical observations with appropriate animal studies should lead to better understanding of the immunological environment throughout the epididymis, the parameters underlying susceptibility to epididymitis, and to therapeutic approaches that can mitigate epididymal damage and subsequent fertility problems.


Infection and Immunity | 2014

Uropathogenic Escherichia coli Modulates Innate Immunity To Suppress Th1-Mediated Inflammatory Responses during Infectious Epididymitis

Tali Lang; Christoph Hudemann; Svetlin Tchatalbachev; Angelika Stammler; Vera Michel; Ferial Aslani; Sudhanshu Bhushan; Trinad Chakraborty; Harald Renz; Andreas Meinhardt

ABSTRACT Infectious epididymitis in men, a frequent entity in urological outpatient settings, is commonly caused by bacteria originating from the anal region ascending the genitourinary tract. One of the most prevalent pathogens associated with epididymitis is Escherichia coli. In our previous study, we showed that semen quality is compromised in men following epididymitis associated with specific E. coli pathovars. Thus, our aim was to investigate possible differences in immune responses elicited during epididymitis following infection with the uropathogenic E. coli (UPEC) strain CFT073 and the nonpathogenic enteric E. coli (NPEC) strain 470. Employing an in vivo experimental epididymitis model, C57BL/6 mice were infected with UPEC CFT073, NPEC 470, or phosphate-buffered saline (PBS) as a sham control for up to 7 days. After infection with NPEC 470, the expression of proinflammatory cytokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha in the epididymis was significantly increased. Conversely, UPEC CFT073-challenged mice displayed inflammatory gene expression at levels comparable to sham PBS-treated animals. Moreover, by day 7 only NPEC-infected animals showed activation of adaptive immunity evident by a substantial influx of CD3+ and F4/80+ cells in the epididymal interstitium. This correlated with enhanced production of Th1-associated cytokines IL-2 and gamma interferon (IFN-γ). Furthermore, splenocytes isolated from UPEC-infected mice exhibited diminished T-cell responses with significantly reduced secretion of IL-2 and IFN-γ in contrast to NPEC-infected animals. Overall, these findings provide new insights into understanding pathogen-specific modulation of host immunity during acute phases of epididymitis, which may influence severity of disease and clinical outcomes.


The Journal of Pathology | 2016

Uropathogenic Escherichia coli causes fibrotic remodelling of the epididymis.

Vera Michel; Yonggang Duan; Elke Stoschek; Sudhanshu Bhushan; Ralf Middendorff; Julia M Young; Kate L. Loveland; David M. de Kretser; Mark P. Hedger; Andreas Meinhardt

Despite antibiotic treatment, up to 40% of patients have impaired fertility after epididymitis due to serovars of Escherichia coli, a frequent pathogen. The reasons for infertility are unclear, but it may result from epididymal duct obstruction. To determine whether E. coli infection of the epididymis causes obstruction due to fibrosis, and to identify the key mediators, tissues from patients with epididymitis were assessed. Additionally, epididymitis was induced with uropathogenic E. coli (UPEC) or commensal serovars in wild‐type and MyD88−/− mice, which are relatively unresponsive to bacterial pathogens. Epididymal organ cultures were treated with activin A and bacteria and their histology and levels of cytokines and fibrosis markers were analysed. Patients with epididymitis showed severe fibrosis of the epididymal duct. In mice, UPEC infection also caused fibrosis and ductal obstruction in the cauda epididymis. Levels of mRNA for fibrotic markers (α‐smooth muscle actin, fibronectin) and cytokines (activin A, TNFα, IL‐1α, IL‐1β, IL‐6) and total collagen levels were significantly elevated. This fibrotic response was blunted by the loss of MyD88. Activin A induced fibrosis in cultured epididymis, which was inhibited by the activin‐binding protein follistatin. In summary, bacterial epididymitis causes fibrosis and obstruction. The milder tissue damage in Myd88−/− UPEC epididymitis highlights the importance of the host response to infection in causing epididymal damage. Elevated levels of activin A in vivo and fibrotic remodelling elicited by activin A in vitro indicate that this cytokine is a potential target for supplementary treatment to antibiotic therapy. Copyright


Scientific Reports | 2017

Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice

Nour Nicolas; Vera Michel; Sudhanshu Bhushan; Eva Wahle; Susan Hayward; Helen Ludlow; David M. de Kretser; Kate L. Loveland; Hans-Christian Schuppe; Andreas Meinhardt; Mark P. Hedger; Monika Fijak

Experimental autoimmune epididymo-orchitis (EAEO) is a model of chronic inflammation, induced by immunisation with testicular antigens, which reproduces the pathology of some types of human infertility. Activins A and B regulate spermatogenesis and steroidogenesis, but are also pro-inflammatory, pro-fibrotic cytokines. Expression of the activins and their endogenous antagonists, inhibin and follistatin, was examined in murine EAEO. Adult untreated and adjuvant-treated control mice showed no pathology. All mice immunised with testis antigens developed EAEO by 50 days, characterised by loss of germ cells, immune cell infiltration and fibrosis in the testis, similar to biopsies from human inflamed testis. An increase of total CD45+ leukocytes, comprising CD3+ T cells, CD4 + CD8− and CD4 + CD25+ T cells, and a novel population of CD4 + CD8+ double positive T cells was also detected in EAEO testes. This was accompanied by increased expression of TNF, MCP-1 and IL-10. Activin A and B and follistatin protein levels were elevated in EAEO testes, with peak activin expression during the active phase of the disease, whereas mRNA expression of the inhibin B subunits (Inha and Inhbb) and activin receptor subunits (Acvr1b and Acvr2b) were downregulated. These data suggest that activin–follistatin regulation may play a role during the development of EAEO.


Journal of Andrology | 2017

Activin and follistatin interactions in the male reproductive tract: activin expression and morphological abnormalities in mice lacking follistatin 288

Rukmali Wijayarathna; Mai A. Sarraj; R. Genovese; Jane E. Girling; Vera Michel; Helen Ludlow; Kate L. Loveland; Andreas Meinhardt; David M. de Kretser; Mark P. Hedger

Activin A is an important regulator of testicular and epididymal development and function, as well as inflammation and immunity. In the adult murine reproductive tract, activin A mRNA (Inhba) expression levels are highest in the caput epididymis and decrease progressively towards the distal vas deferens. The activin‐binding protein, follistatin (FST), shows the opposite expression pattern, with exceptionally high levels of the Fst288 mRNA variant in the vas deferens. This unique pattern of expression suggests that activin A and follistatin, in particular FST288, play region‐specific roles in regulating the epididymis and vas deferens. The cellular distribution of activin and follistatin and structural organization of the male reproductive tract was examined in wild‐type and transgenic (TghFST315) mice lacking FST288. Compared to wild‐type littermates, TghFST315 mice showed a 50% reduction in serum follistatin and a significant elevation of both activin A and B. Testicular, epididymal and seminal vesicle weights were reduced, but intra‐testicular testosterone was normal. A decrease in the epididymal duct diameter in the corpus and thickening of the peritubular smooth muscle in the cauda, together with increased coiling of the proximal vas deferens, were observed in TghFST315 mice. No immune cell infiltrates were detected. Immunohistochemistry indicated that epithelial cells are the main source of activins and follistatin in the epididymis and vas deferens. Activin A, but not activin B, was also localized to sperm heads in the lumen of the epididymis and vas deferens. Expression of Inhba and another immunoregulatory gene, indoleamine‐2,3‐dioxygenase (Ido‐1), was increased approximately twofold in the TghFST315 caput epididymis, but several other genes associated with immunoregulation, inflammation or fibrosis were unaffected. Our novel data indicate that disruption of follistatin expression has significant effects on the testis and epididymis, and suggest an association between activin A and indoleamine‐2,3‐dioxygenase in the caput epididymis, with implications for the epididymal immunoenvironment.


Journal of Biological Chemistry | 2016

Desialylation of spermatozoa and epithelial cell glycocalyx is a consequence of bacterial infection of the epididymis

Farhad Khosravi; Vera Michel; Christina E. Galuska; Sudhanshu Bhushan; Philipp Christian; Hans-Christian Schuppe; Adrian Pilatz; Sebastian P. Galuska; Andreas Meinhardt

Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis.


Human Reproduction Update | 2018

Infectious, inflammatory and ‘autoimmune’ male factor infertility: how do rodent models inform clinical practice?

Monika Fijak; Adrian Pilatz; Mark P. Hedger; Nour Nicolas; Sudhanshu Bhushan; Vera Michel; Kenneth S. K. Tung; Hans-Christian Schuppe; Andreas Meinhardt

Abstract BACKGROUND Infection and inflammation of the reproductive tract are significant causes of male factor infertility. Ascending infections caused by sexually transmitted bacteria or urinary tract pathogens represent the most frequent aetiology of epididymo-orchitis, but viral, haematogenous dissemination is also a contributory factor. Limitations in adequate diagnosis and therapy reflect an obvious need for further understanding of human epididymal and testicular immunopathologies and their contribution to infertility. A major obstacle for advancing our knowledge is the limited access to suitable tissue samples. Similarly, the key events in the inflammatory or autoimmune pathologies affecting human male fertility are poorly amenable to close examination. Moreover, the disease processes generally have occurred long before the patient attends the clinic for fertility assessment. In this regard, data obtained from experimental animal models and respective comparative analyses have shown promise to overcome these restrictions in humans. OBJECTIVE AND RATIONALE This narrative review will focus on male fertility disturbances caused by infection and inflammation, and the usefulness of the most frequently applied animal models to study these conditions. SEARCH METHODS An extensive search in Medline database was performed without restrictions until January 2018 using the following search terms: ‘infection’ and/or ‘inflammation’ and ‘testis’ and/or ‘epididymis’, ‘infection’ and/or ‘inflammation’ and ‘male genital tract’, ‘male infertility’, ‘orchitis’, ‘epididymitis’, ‘experimental autoimmune’ and ‘orchitis’ or ‘epididymitis’ or ‘epididymo-orchitis’, antisperm antibodies’, ‘vasectomy’. In addition to that, reference lists of primary and review articles were reviewed for additional publications independently by each author. Selected articles were verified by each two separate authors and discrepancies discussed within the team. OUTCOMES There is clear evidence that models mimicking testicular and/or epididymal inflammation and infection have been instructive in a better understanding of the mechanisms of disease initiation and progression. In this regard, rodent models of acute bacterial epididymitis best reflect the clinical situation in terms of mimicking the infection pathway, pathogens selected and the damage, such as fibrotic transformation, observed. Similarly, animal models of acute testicular and epididymal inflammation using lipopolysaccharides show impairment of reproduction, endocrine function and histological tissue architecture, also seen in men. Autoimmune responses can be studied in models of experimental autoimmune orchitis (EAO) and vasectomy. In particular, the early stages of EAO development showing inflammatory responses in the form of peritubular lymphocytic infiltrates, thickening of the lamina propria of affected tubules, production of autoantibodies against testicular antigens or secretion of pro-inflammatory mediators, replicate observations in testicular sperm extraction samples of patients with ‘mixed atrophy’ of spermatogenesis. Vasectomy, in the form of sperm antibodies and chronic inflammation, can also be studied in animal models, providing valuable insights into the human response. WIDER IMPLICATIONS This is the first comprehensive review of rodent models of both infectious and autoimmune disease of testis/epididymis, and their clinical implications, i.e. their importance in understanding male infertility related to infectious and non-infectious/autoimmune disease of the reproductive organs.


Histochemistry and Cell Biology | 2014

Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency.

Barbara Ahlemeyer; Julia-Franziska Vogt; Vera Michel; Petra Hahn-Kohlberger; Eveline Baumgart-Vogt


Journal of Reproductive Immunology | 2016

The contribution of fibroblasts and EMT to fibrosis in bacterial infection of the epididymis

Julia Kautz; Vera Michel; Andreas Meinhardt


Journal of Reproductive Immunology | 2015

Inflammation and infection in the male reproductive tract

Sudhanshu Bhushan; Vera Michel; E. Stoschek; Magdalena Walecki; Monika Fijak; Andreas Meinhardt

Collaboration


Dive into the Vera Michel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. Hedger

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kate L. Loveland

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. de Kretser

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge